Wavelet transforms of meteorological parameters and gravity waves

Author:

Can Z.,Aslan Z.,Oguz O.,Siddiqi A. H.

Abstract

Abstract. The main purpose of this paper is to analyze some characteristics of gravity waves (GWs), and seasonal variations of atmospheric waves over Istanbul by using wavelet techniques. Daily radiosonda data of Istanbul in the troposphere and lower stratosphere (1000hPa-30hPa) between 1993 and 1997 have been considered. Wavelet analysis based on a computer simulation of data is generally close to the real data when Daubechies wavelet series are used. Daily, monthly, seasonal and annual variations of pressure heights, air temperature and deviations from mean values have been analyzed. Variations show the effects of gravity waves for different pressure levels in the troposphere. These waves lead to the meso-scale wave-form structures in spring, autumn and winter. As a result of this study, wavelet series and transforms for data construction, definition of some discontinuities and the local effects on the signal have been compared with the results of previous studies. The most similar structure between temperature, turbulence parameters and geo-potential height deviations has been defined at the 500-hPa pressure level.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wavelet-ANFIS hybrid model for MODIS NDVI prediction;Journal of Applied Remote Sensing;2021-06-02

2. Prediction of River Water Quality Parameters Using Soft Computing Techniques;Springer Transactions in Civil and Environmental Engineering;2020-07-30

3. Certain Areas of Industrial and Applied Mathematics;Mathematical Modelling, Optimization, Analytic and Numerical Solutions;2020

4. Neuro-fuzzy-wavelet hybrid approach to estimate the future trends of river water quality;Neural Computing and Applications;2019-10-23

5. Multiwindow Nonharmonic Analysis Method for Gravitational Waves;IEEE Access;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3