SEEK-2 (Sporadic-<i>E</i> Experiment over Kyushu 2) − Project Outline, and Significance

Author:

Yamamoto M.,Fukao S.,Tsunoda R. T.,Pfaff R.,Hayakawa H.

Abstract

Abstract. SEEK-2 (Sporadic-E Experiment over Kyushu 2) is an observation campaign to study the spatial structure of the field-aligned irregularity (FAI) and sporadic-E(Es)-layer by means of two sounding rockets and a ground-based observation network with radars and optical instruments. The experiment was successfully conducted on 3 August 2002, with successive launches of two sounding rockets from the Uchinoura Space Center (USC) of the Japan Aerospace Exploration Agency (JAXA). The timing of the experiment was carefully selected, while intense quasi-periodic (QP) echoes were observed with two radars in Tanegashima. The main Es-layer, with its double-layered structure, was observed at altitudes of 103–105 km, the presence of which was well accounted for by the ion accumulation due to neutral-wind shear. Several minor peaks were detected in the electron density profiles at altitudes of up to 130 km. The intensity of the electric field was 5–10 mV/m and showed intense fluctuations below 110 km. Wave-like variation of the electric field was seen above 110 km. From radar experiments, we found that QP echoes appeared around 105 km, which agreed well with the main Es-layer height. The QP echoes propagated to the west-northwest, with frontal structures elongated from north-northeast to south-southwest. Radar observations conduced throughout the SEEK-2 period, on the other hand, showed that frontal structures of the QP echoes were most frequently propagated to the southeast. This result was consistent with the direction of gravity-wave propagation observed with the OH imager during the same period. The rocket beacon experiment with the Es-layers revealed the spatial structure of the plasma densities. On the basis of these results and those from SEEK-1 in 1996, we examined the structures of the nighttime mid-latitude E-region. We concluded that the QP echoes reflect the horizontal structures of the main Es-layers. The source of the structures was not clearly determined from the experiments, but the candidates are gravity waves and the Kelvin-Helmholtz instability. The azimuth-dependent Es-instability may have contributed to enhance structures of the QP echoes, although this instability may not be a major source of the QP structure in SEEK-2. Polarization electric fields were induced from the Es-layer with QP echoes, mapped upward along the geomagnetic field, and played an important role in determining the structures of the whole ionospheric E-region. Keywords. Mid-latitude ionosphere – Ionospheric irregularities – Ionosphere-atmosphere interactions

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3