Electric current and magnetic field geometry in flapping magnetotail current sheets

Author:

Runov A.,Sergeev V. A.,Baumjohann W.,Nakamura R.,Apatenkov S.,Asano Y.,Volwerk M.,Vörös Z.,Zhang T. L.,Petrukovich A.,Balogh A.,Sauvaud J.-A.,Klecker B.,Rème H.

Abstract

Abstract. Using four-point magnetic field measurements by the Cluster spacecraft, we statistically analyze the magnetic field and electric current configurations during rapid crossings of the current sheet observed in July-October 2001 at geocentric distances of 19 RE. The database includes 78 crossings, specially selected to apply multi-point data analysis techniques to calculate vector derivatives. Observed bipolar variations of jz, often with | jz |>jy, indicate that the electric currents follow kinks of the current sheet. The current density varies between 5-25nA/m2. The half-thickness of the current sheet during flapping varies over a wide range, from 1 to 20 ion thermal gyroradii (Lcp), calculated from average temperature and lobe magnetic field for each crossing). We found no relationship between the tilt angle of the current sheet normal and the half-thickness. In 68 cases the magnetic field curvature vector has a positive (earthward) X-component. Ten cases with a negative (tailward) curvature, associated with reconnection, were detected within 0<YGSM<7 RE. The minimum curvature radii vary mainly between 1 and 10 Lcp, and the adiabaticity parameter κ≤1 for 73% of the events. The electric current density during flapping is often off-central, i.e. the main current density is shifted from the neutral sheet (| Bx |<5nT) to the Northern or Southern Hemisphere. This is most likely a temporal effect related to the flapping. The analysis shows that the flapping motion of the current sheet is associated with kink-like waves on the sheet surface. The kink fronts, tilted in the Y-Z plane, moved toward dawn in the morning half and toward dusk in the evening half of the magnetotail.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3