Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade

Author:

Rodger C. J.,Brundell J. B.,Dowden R. L.

Abstract

Abstract. An experimental VLF World-Wide Lightning Location (WWLL) network has been developed through collaborations with research institutions across the globe. The aim of the WWLL is to provide global real-time locations of lightning discharges, with >50% CG flash detection efficiency and mean location accuracy of <10km. While these goals are essentially arbitrary, they do define a point where the WWLL network development can be judged a success, providing a breakpoint for a more stable operational mode. The current network includes 18 stations which cover much of the globe. As part of the initial testing phase of the WWLL the network operated in a simple mode, sending the station trigger times into a central processing point rather than making use of the sferic Time of Group Arrival (TOGA). In this paper the location accuracy of the post-TOGA algorithm WWLL network (after 1 August 2003) is characterised, providing estimates of the globally varying location accuracy for this network configuration which range over 1.9-19km, with the global median being 2.9km, and the global mean 3.4km. The introduction of the TOGA algorithm has significantly improved the location accuracies. The detection efficiency of the WWLL is also considered. In the selected region the WWLL detected ~13% of the total lightning, suggesting a ~26% CG detection efficiency and a ~10% IC detection efficiency. Based on a comparison between all WWLL good lightning locations in February-April 2004, and the activity levels expected from satellite observations we estimate that the WWLL is currently detecting ~2% of the global total lightning, providing good locations for ~5% of global CG activity. The existing WWLL network is capable of providing real-time positions of global thunderstorm locations in its current form.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3