On the motion of dayside auroras caused by a solar wind pressure pulse

Author:

Kozlovsky A.,Safargaleev V.,Østgaard N.,Turunen T.,Koustov A.,Jussila J.,Roldugin A.

Abstract

Abstract. Global ultraviolet auroral images from the IMAGE satellite were used to investigate the dynamics of the dayside auroral oval responding to a sudden impulse (SI) in the solar wind pressure. At the same time, the TV all-sky camera and the EISCAT radar on Svalbard (in the pre-noon sector) allowed for detailed investigation of the auroral forms and the ionospheric plasma flow. After the SI, new discrete auroral forms appeared in the poleward part of the auroral oval so that the middle of the dayside oval moved poleward from about 70° to about 73° of the AACGM latitude. This poleward shift first occurred in the 15 MLT sector, then similar shifts were observed in the MLT sectors located more westerly, and eventually the shift was seen in the 6 MLT sector. Thus, the auroral disturbance "propagated" westward (from 15 MLT to 6 MLT) at an apparent speed of the order of 7km/s. This motion of the middle of the auroral oval was caused by the redistribution of the luminosity within the oval and was not associated with the corresponding motion of the poleward boundary of the oval. The SI was followed by an increase in the northward plasma convection velocity. Individual auroral forms showed poleward progressions with velocities close to the velocity of the northward plasma convection. The observations indicate firstly a pressure disturbance propagation through the magnetosphere at a velocity of the order of 200km/s which is essentially slower than the velocity of the fast Alfvén (magnetosonic) wave, and secondly a potential (curl-free) electric field generation behind the front of the propagating disturbance, causing the motion of the auroras. We suggest a physical explanation for the slow propagation of the disturbance through the magnetosphere and a model for the electric field generation. Predictions of the model are supported by the global convection maps produced by the SuperDARN HF radars. Finally, the interchange instability and the eigenmode toroidal Alfvén oscillations are discussed as possible generation mechanisms for the dayside auroral forms launched by the SI.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3