Sea level variability at Adriatic coast and its relationship to atmospheric forcing

Author:

Bergant K.,Sušnik M.,Strojan I.,Shaw A. G. P.

Abstract

Abstract. Sea level (SLH) variability at the Adriatic coast was investigated for the period 1872–2001 using monthly average values of observations at 13 tide gauge stations. Linear trends and seasonal cycles were investigated first and removed afterwards from the data. Empirical Orthogonal Functions (EOF) analysis was used further on remaining anomalies (SLA) to extract the regional intermonthly variability of SLH. It was found that the leading EOF and its principal component (PC) explain a major part of SLA variability (92%). The correlation between the reconstructed SLA, based on leading EOF and its PC, and overlapping observed SLA values for selected tide gauge stations is between 0.93 and 0.99. Actual SLH values at tide gauge stations can be reconstructed and some gaps in the data can be filled in on the basis of estimated SLA values if reasonable estimates of long-term trends and seasonal cycles are also available. A strong, seasonally dependent relationship between SLA at the Adriatic coast and atmospheric forcing, represented by sea level pressure (SLP) fields, was also found. Comparing the time series of leading PC and gridded SLP data for the period 1948–2001, the highest correlation coefficients (r) of –0.92 in winter, –0.84 in spring, –0.66 in summer, and –0.91 in autumn were estimated for a SLP grid point located in northern Italy. The SLP variability on this grid point contains information about the isostatic response of the sea level at the Adriatic coast, but can also be treated as a sort of teleconnection index representing the large-scale SLP variability across central and southern Europe. To some extent the large-scale SLP variability that affects the SLA at the Adriatic coast can be related to the North Atlantic Oscillation (NAO), because significant correlations were found between the NAO index and the first PC of SLA (rwinter=–0.56, rspring=–0.45, rsummer=–0.48, and rautumn=–0.43) for the period 1872–2001. The use of partial least-squares (PLS) regression between large-scale SLP fields and SLA only slightly improved the description of the SLA dependence on SLP forcing in comparison to the single grid point approach. A strong relationship between atmospheric pressure and the sea level could represent an additional possibility for filling in the gaps in the tide gauge data. Keywords. Oceanography: general (Climate and interannual variability) – Oceanography: physical (Air-sea interactions; sea level variations)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3