Three-dimensional tracking of mid-latitude quasi-periodic E-region echoes observed with the Chung-Li VHF radar

Author:

Chen C. L.,Pan C. J.,Röttger J.,Anandan V. K.

Abstract

Abstract. This paper presents observations of low-altitude mid-latitude E-region irregularities obtained with the 52-MHz Chung-Li VHF radar. These are carried out in the interferometer mode to investigate the behavior of these irregularities over time and space. The observations presented here show the characteristics of type-II echoes noted by a negative slope, i.e. they are approaching the radar as a function of time. The range-time-intensity (RTI) plots obtained through power spectrum analysis reveal the quasi-periodic striations, which are known as LQP (Low-altitude QP) echoes. Our interferometer analysis allows one to investigate the motion (i.e. "tracking") of the LQP echo patches in three dimensions. This method is superior to just evaluating the variations of the echo power as a function of range and time in the standard RTI-plots. By applying this method, we show that the echo patches in different striations remain at almost the same altitude when we trace the isolated echoing regions until they disappear from the radar view. We further compare the rate of change of the range (range rate dR/dt) by two techniques: one by simply measuring the varying slope of the LQP echoes from RTI plot, the other by tracking the three-dimensional locations of the LQP scatterers by using the interferometer technique. We finally prove that the changes in range as a function of time, deduced from the interferometer technique, are significantly correlated with those of the standard range rate analysis. However, the standard range rate analysis does not provide information about the correct location and the variation of the LQP irregularities. The three-dimensional analysis, which we introduced for tracking individual striations, shows that LQP echo patches are confined to between 98 and 100km altitude. This suggests that the irregularities which cause the LQP echoes drifted through the radar beam at approximately constant altitude, which we tend to attribute to a region of large-scale vertical shear of the horizontal wind.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3