Abstract
Abstract. We investigate the ray trajectories of nonductedly propagating lower-band chorus waves with respect to their initial angle θ0, between the wave vector and ambient magnetic field. Although we consider a wide range of initial angles θ0, in order to be consistent with recent satellite observations, we pay special attention to the intervals of initial angles θ0, for which the waves propagate along the field lines in the source region, i.e. we mainly focus on waves generated with &theta0 within an interval close to 0° and on waves generated within an interval close to the Gendrin angle. We demonstrate that the ray trajectories of waves generated within an interval close to the Gendrin angle with a wave vector directed towards the lower L-shells (to the Earth) significantly diverge at the frequencies typical for the lower-band chorus. Some of these diverging trajectories reach the topside ionosphere having θ close to 0°; thus, a part of the energy may leak to the ground at higher altitudes where the field lines have a nearly vertical direction. The waves generated with different initial angles are reflected. A small variation of the initial wave normal angle thus very dramatically changes the behaviour of the resulting ray. Although our approach is rather theoretical, based on the ray tracing simulation, we show that the initial angle θ0 of the waves reaching the ionosphere (possibly ground) is surprisingly close - differs just by several degrees from the initial angles which fits the observation of magnetospherically reflected chorus revealed by CLUSTER satellites. We also mention observations of diverging trajectories on low altitude satellites.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献