Creation of the substorm current wedge through the perturbation of the directly driven current system: a new model for substorm expansion

Author:

Rostoker G.,Friedrich E.

Abstract

Abstract. The past four decades have seen a considerable amount of research on the study of magnetospheric substorms, and over most of these years the expansive phase of the substorm has been associated with the development of a three dimensional current system that has been termed the substorm current wedge. This current system has been thought to be a consequence of the short-circuiting of crosstail current through the ionosphere, and is viewed as a distinctive current system operating independently from the directly driven current with which it co-exists. The purpose of this paper is to show that the substorm current wedge should be viewed as an equivalent current system rather than a real current system. It will be shown that the magnetic perturbation pattern associated with the current wedge can be modeled as purely a perturbation of the directly driven current system in the midnight sector. Keywords. Magnetospheric physics (Auroral phenomena; Current systems; Magnetotail; Storms and substorms

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seasonal and Temporal Variations of Field-Aligned Currents and Ground Magnetic Deflections During Substorms;Journal of Geophysical Research: Space Physics;2018-04

2. Substorm Current Wedge Revisited;Space Science Reviews;2014-12-04

3. Field line resonances as a trigger and a tracer for substorm onset;Journal of Geophysical Research: Space Physics;2014-07

4. In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge;Journal of Geophysical Research: Space Physics;2014-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3