OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfactants) sea spray organic aerosol emissions – implementation in a global climate model and impacts on clouds

Author:

Burrows Susannah M.ORCID,Easter Richard C.ORCID,Liu Xiaohong,Ma Po-LunORCID,Wang HailongORCID,Elliott Scott M.,Singh Balwinder,Zhang KaiORCID,Rasch Philip J.

Abstract

Abstract. Sea spray aerosol is one of the major sources of atmospheric particulate matter globally. It has increasingly been recognized that organic matter derived from ocean biological precursors contributes significantly to the composition of submicron sea spray and may modify sea spray aerosol impacts on clouds and climate. This paper describes the implementation of the OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfactants) parameterization for sea spray organic aerosol emissions in a global Earth system model, the Energy Exascale Earth System Model (E3SM). OCEANFILMS is a physically based model that links sea spray chemistry with ocean biogeochemistry using a Langmuir partitioning approach. We describe the implementation details of OCEANFILMS within E3SM, compare simulated aerosol fields with observations, and investigate impacts on simulated clouds and climate. Four sensitivity cases are tested, in which organic emissions either strictly add to or strictly replace sea salt emissions (in mass and number) and are either fully internally or fully externally mixed with sea salt. The simulation with internally mixed, added organics agrees reasonably well with observed seasonal cycles of organic matter in marine aerosol and has been selected as the default configuration of the E3SM. In this configuration, sea spray organic aerosol contributes an additional source of cloud condensation nuclei, adding up to 30 cm−3 to Southern Ocean boundary-layer cloud condensation nuclei concentrations (supersaturation = 0.1 %). The addition of this new aerosol source strengthens shortwave radiative cooling by clouds by −0.36 W m−2 in the global annual mean and contributes more than −3.5 W m−2 to summertime zonal mean cloud forcing in the Southern Ocean, with maximum zonal mean impacts of about −4 W m−2 around 50–60∘ S. This is consistent with a previous top-down, satellite-based empirical estimate of the radiative forcing by sea spray organic aerosol over the Southern Ocean. Through its mechanistic approach, OCEANFILMS offers a path towards improved understanding of the feedbacks between ocean biology, sea spray organic matter, and climate.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3