Measurement report: Interpretation of wide-range particulate matter size distributions in Delhi

Author:

Şahin Ülkü AlverORCID,Harrison Roy M.ORCID,Alam Mohammed S.,Beddows David C. S.,Bousiotis DimitriosORCID,Shi ZongboORCID,Crilley Leigh R.ORCID,Bloss WilliamORCID,Brean James,Khanna Isha,Verma Rulan

Abstract

Abstract. Delhi is one of the world's most polluted cities, with very high concentrations of airborne particulate matter. However, little is known about the factors controlling the characteristics of wide-range particle number size distributions. Here, new measurements are reported from three field campaigns conducted in winter and pre-monsoon and post-monsoon seasons at the Indian Institute of Technology campus in the south of the city. Particle number size distributions were measured simultaneously, using a scanning mobility particle sizer and a GRIMM optical particle monitor, covering 15 nm to >10 µm diameter. The merged, wide-range size distributions were categorized into the following five size ranges: nucleation (15–20 nm), Aitken (20–100 nm), accumulation (100 nm–1 µm), large fine (1–2.5 µm), and coarse (2.5–10 µm) particles. The ultrafine fraction (15–100 nm) accounts for about 52 % of all particles by number (PN10 is the total particle number from 15 nm to 10 µm) but just 1 % by PM10 volume (PV10 is the total particle volume from 15 nm to 10 µm). The measured size distributions are markedly coarser than most from other parts of the world but are consistent with earlier cascade impactor data from Delhi. Our results suggest substantial aerosol processing by coagulation, condensation, and water uptake in the heavily polluted atmosphere, which takes place mostly at nighttime and in the morning hours. Total number concentrations are highest in winter, but the mode of the distribution is largest in the post-monsoon (autumn) season. The accumulation mode particles dominate the particle volume in autumn and winter, while the coarse mode dominates in summer. Polar plots show a huge variation between both size fractions in the same season and between seasons for the same size fraction. The diurnal pattern of particle numbers is strongly reflective of a road traffic influence upon concentrations, especially in autumn and winter, although other sources, such as cooking and domestic heating, may influence the evening peak. There is a clear influence of diesel traffic at nighttime, when it is permitted to enter the city, and also indications in the size distribution data of a mode < 15 nm, which is probably attributable to CNG/LPG vehicles. New particle formation appears to be infrequent and is, in this dataset, limited to 1 d in the summer campaign. Our results reveal that the very high emissions of airborne particles in Delhi, particularly from traffic, determine the variation in particle number size distributions.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3