Future economic perspective and potential revenue of non-subsidized wind turbines in Germany

Author:

Blickwedel LucasORCID,Harzendorf Freia,Schelenz RalfORCID,Jacobs Georg

Abstract

Abstract. Fixed feed-in tariffs based on the Renewable Energy Act grant secure revenues from selling electricity for wind turbine operators in Germany. Anyhow, the level of federal financial support is being reduced consecutively. Plant operators must trade self-sufficiently in the future and hence generate revenue by selling electricity directly on electricity markets. Therefore, uncertain future market price developments will influence investment considerations and may lead to stagnation in the expansion of renewable energies. This study estimates future revenue potentials of non-subsidized wind turbines in Germany to reduce this risk. The paper introduces and analyses a forecasting model that generates electricity price time series suited for revenue estimation of wind turbines based on the electricity exchange market. Revenues from the capacity market are neglected. The model is based on openly accessible data and applies a merit-order approach in combination with a simple agent-based approach to forecast long-term day-ahead prices at an hourly resolution. The hourly generation profile of wind turbines can be mapped over several years in conjunction with fluctuations in the electricity price. Levelized revenue of energy is used to assess both dynamic variables (electricity supply and price). The merit-order effect from the expansion of renewables as well as the phasing out of nuclear energy and coal are assessed in a scenario analysis. Based on the assumptions made, the opposing effects could result in a constant average price level for Germany over the next 20 years. The influence of emission prices is considered in a sensitivity analysis and correlates with the share of fossil generation capacities in the generation mix. In a brief case study, it was observed that current average wind turbines are not able to yield financial profit over their lifetime without additional subsidies for the given case. This underlines a need for technical development and new business models like power purchase agreements. The model results can be used for setting and negotiating appropriate terms, such as energy price schedule or penalties for those agreements.

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference46 articles.

1. Baker, T.: Levelized Revenue of Electricity (LROE) – Part 2: Renewable Energy Analysis, A smart, well researched and scientific analysis of the science, policy and business of renewable energy, available at: http://thomasabaker.blogspot.com/2011/09/levelized-revenue-of-electricity-lroe.html, last access: 5 November 2020, 2011a.

2. Baker, T.: Levelized Revenue of Electricity (LROE) – Part 1: Renewable Energy Analysis, A smart, well researched and scientific analysis of the science, policy and business of renewable energy, available at: http://thomasabaker.blogspot.com/2011/08/levelized-revenue-of-electricity-lroe.html, last access: 5 November 2020, 2011b.

3. Berger, A., Marschner, P., Bühler, K., and Kurz, A.: Corporate PPA erfolgreich gestalten, available at: https://www.roedl.de/de-de/de/erneuerbare-energien/documents/corporate-ppa-erfolgreich-gestalten.pdf (last access: 4 November 2020), 2016.

4. Boubault, A., Ho, C. K., Hall, A., Lambert, T. N., and Ambrosini, A.: Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry, Renew. Energ., 85, 472–483, https://doi.org/10.1016/j.renene.2015.06.059, 2016.

5. Brinkerink, M. and Deane, P.: PLEXOS World 2015, https://doi.org/10.7910/DVN/CBYXBY, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3