Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles

Author:

Mikhailov Eugene F.ORCID,Vlasenko Sergey S.,Kiselev Alexei A.ORCID

Abstract

Abstract. Water activity (aw) and interfacial energy or surface tension (σ) are key thermodynamic parameters to describe the hygroscopic growth of atmospheric aerosol particles and their ability to serve as cloud condensation nuclei (CCN), thus influencing the hydrological cycle and climate. Due to size effects and complex mixing states, however, these parameters are not well constrained for nanoparticles composed of organic and inorganic compounds in aqueous solution. In this study, we determined aw and σ by differential Köhler analysis (DKA) of hygroscopic growth measurement data for aerosol particles smaller than 100 nm composed of aqueous ammonium sulfate (AS), D-glucose (Gl), and their mixtures. High-precision measurements of hygroscopic growth were performed at relative humidities (denoted RH) ranging from 2.0 % to 99.6 % with a high-humidity tandem differential mobility analyzer (HHTDMA) in three complementary modes of operation: hydration, dehydration, and restructuring. The restructuring mode (hydration followed by dehydration) enabled the transformation of initially irregular particles into compact globules and the determination of mass equivalent diameters. The HHTDMA-derived growth factors complemented by DKA allows for determination of water activity and surface tension from dilute to highly supersaturated aqueous solutions that are not accessible with other methods. Thus, for mixed AS / Gl nanoparticles with mass ratios of 4:1 and 1:1, the upper limit of solute mass fraction (Xs) was 0.92 and 0.98, respectively. For pure AS and Gl, the DKA-derived aw is in good agreement with electrodynamic balance and bulk measurement data. For AS particles, our aw data also agree well with the Extended Aerosol Inorganics Model (E-AIM III) over the entire concentration range. In contrast, the UNIFAC model as a part of AIOMFAC (Zuend et al., 2011) was found to overestimate aw in aqueous Gl particles, which can be attributed to unaccounted intermolecular interactions. For mixed AS and Gl nanoparticles, we observed a non-monotonic concentration dependence of the surface tension that does not follow the predictions by modeling approaches constructed for mixed inorganic/organic systems. Thus, AS / Gl particles with a 1:1 mass ratio exhibited a strong decrease of σ with increasing solute mass fraction, a minimum value of 56.5 mN m−1 at Xs≈0.5, and a reverse trend of increasing σ at higher concentrations. We suggest that D-glucose molecules surrounded by ammonium sulfate ions tend to associate, forming non-polar aggregates, which lowers the surface tension at the air–droplet interface. We analyzed the uncertainty in the DKA-derived water activity and surface tension, related to the instrumental errors as well as to the morphology of the nanoparticles and their phase state. Our studies have shown that under optimal modes of operation of HHTDMA for moderate aqueous concentrations, the uncertainty in aw and σ does not exceed 0.2 %–0.4 % and 3 %–4 %, respectively, but it increases by an order of magnitude in the case of highly concentrated nanodroplet solutions.

Funder

Russian Science Foundation

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3