Quantum yields of CHDO above 300 nm
-
Published:2024-02-28
Issue:4
Volume:24
Page:2625-2638
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Röth Ernst-PeterORCID, Vereecken LucORCID
Abstract
Abstract. The photolysis of mono-deuterated formaldehyde, CHDO, is a critical process in the deuterium enrichment of stratospheric hydrogen formed from methane. In this work, a consistent description of the quantum yields of the molecular and radical channels of the CHDO photolysis is deduced from literature data. The fluorescence measurements of Miller and Lee (1978) provided a first data set to deduce the product quantum yields. An alternative analysis is based on the measured quantum-yield spectrum for the radical channel of the CD2O photolysis by McQuigg and Calvert (1969), which is corrected for wavelength dependency and combined with the CH2O quantum-yield spectrum to provide an approximation for CHDO. Both approaches provide consistent results. Finally, the findings of Troe (1984, 2007) enable the specification of the pressure dependence of the quantum yield for CH2O and CD2O and, hence, for CHDO. We find that the radical channel does not show a pressure dependence, whereas the molecular channel is dominated by tunneling and quenching processes. Simplified representations are given that are readily implemented in kinetic atmospheric models. As an example of their application, the altitude dependence of the ratio of J(CHDO→HD+CO) and J(CH2O→H2+CO) is provided. Also, the importance of the photolysis of formaldehyde on the yield of HD in the atmosphere is shown through the altitudinal dependence of the isotopic fractionation.
Publisher
Copernicus GmbH
Reference35 articles.
1. Araújo, M., Lasome, B., Magalhaes, A. L., Worth, G. A., Bearperk, M. J., and Robb, M. A.: The molecular dissociation of formaldehyde at medium photoexcitation energies: A quantum chemistry and direct quantum dynamics study, J. Chem. Phys., 131, 144301-1–144301-8, https://doi.org/10.1063/1.3242082, 2009. 2. Breuer, G. M. and Lee, E. K. C.: Fluorescence decay times of Cyclic Ketones, Acetone, and Butanal in the gas phase, J. Phys. Chem., 75, 989–990, https://doi.org/10.1021/j100677a029, 1971. 3. Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Cappa, C., Crous, D., Dipple, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., and Wine, P. H.: Chemical kinetics and photochemical data for use in atmospheric studies, JPL-Publication 19-5, Pasadena, http://jpldataeval.jpl.nasa.gov/ (last access: 27 February 2024), 2019. 4. Chuang, M.-C., Foltz, M. F., and Moore, C. B.: T1 barrier height, S1–T1 intersystem crossing rate, and S0 radical dissociation threshold for H2CO, D2CO, and HDCO, J. Chem. Phys., 87, 3855–3864, https://doi.org/10.1063/1.452940, 1987. 5. Ehhalt, D. H. and Volz, A.: Coupling of the CH4 with the H2 and CO cycle: isotopic evidence, in: Symposium on Microbal Production and Utilization of Gases (H2, CH4, and CO), edited by: Schlegel, H. G., Gottschalk, G., and Pfennig, N., OCLC 4281340, Akad. Wiss. Göttingen, Germany, 1976.
|
|