Technical note: A method for calculating offsets to ozone depletion and climate impacts of ozone-depleting substances
-
Published:2024-02-15
Issue:3
Volume:24
Page:2023-2032
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Dreyfus Gabrielle B.ORCID, Montzka Stephen A.ORCID, Andersen Stephen O., Ferris Richard
Abstract
Abstract. By phasing out production and consumption of most ozone-depleting substances (ODSs), the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) has avoided consequences of increased ultraviolet (UV) radiation and will restore stratospheric ozone to pre-1980 conditions by mid-century, assuming compliance with the phaseout. However, several studies have documented an unexpected increase in emissions and suggested unreported production of trichlorofluoromethane (CFC-11) and potentially other ODSs after 2012 despite production phaseouts under the Montreal Protocol. Furthermore, because most ODSs are powerful greenhouse gases (GHGs), there are significant climate protection benefits in collecting and destroying the substantial quantities of historically allowed production of chemicals under the Montreal Protocol that are contained in existing equipment and products and referred to as ODS “banks”. This technical note presents a framework for considering offsets to ozone depletion, climate forcing, and other environmental impacts arising from occurrences of unexpected emissions and unreported production of Montreal Protocol controlled substances, as recently experienced and likely to be experienced again. We also show how this methodology could be applied to the destruction of banks of controlled ODSs and GHGs or to halon or other production allowed under a Montreal Protocol Essential Use Exemption or Critical Use Exemption. Further, we roughly estimate the magnitude of offset each type of action could provide for ozone depletion, climate, and other environmental impacts that Montreal Protocol Parties agree warrant remedial action.
Funder
Children's Investment Fund Foundation
Publisher
Copernicus GmbH
Reference51 articles.
1. Abernethy, S. and Jackson, R. B.: Global temperature goals should determine the time horizons for greenhouse gas emission metrics, Environ. Res. Lett., 17, 024019, https://doi.org/10.1088/1748-9326/ac4940, 2022. 2. Adcock, K. E., Ashfold, M. J., Chou, C. C.-K., Gooch, L. J., Mohd Hanif, N., Laube, J. C., Oram, D. E., Ou-Yang, C.-F., Panagi, M., Sturges, W. T., and Reeves, C. E.: Investigation of East Asian Emissions of CFC-11 Using Atmospheric Observations in Taiwan, Environ. Sci. Technol., 54, 3814–3822, https://doi.org/10.1021/acs.est.9b06433, 2020. 3. Andersen, S. O. and Sarma, K. M.: Protecting the Ozone Layer: The United Nations History, Earthscan Press (official publication of the United Nations Environment Programme), London, England, 513 pp., https://doi.org/10.4324/9781849772266, 2002. 4. Andersen, S. O., Gao, S., Carvalho, S., Ferris, T., Gonzalez, M., Sherman, N. J., Wei, Y., and Zaelke, D.: Narrowing feedstock exemptions under the Montreal Protocol has multiple environmental benefits, P. Natl. Acad. Sci. USA, 118, e2022668118, https://doi.org/10.1073/pnas.2022668118, 2021. 5. Arias, P. A., Bellouin, N., Coppola, E. et al.: Technical Summary. in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A. et al., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 33−-144, https://doi.org/10.1017/9781009157896.002, 2021.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|