Retrieval of snow grain size and albedo of western Himalayan snow cover using satellite data

Author:

Negi H. S.,Kokhanovsky A.

Abstract

Abstract. In the present study we describe the retrievals of snow grain size and spectral albedo (plane and spherical albedo) for western Himalayan snow cover using Hyperion sensor data. The asymptotic radiative transfer (ART) theory was explored for the snow retrievals. To make the methodology operational only five spectral bands (440, 500, 1050, 1240 and 1650 nm) of Hyperion were used for snow parameters retrieval. The bi-spectral method (440 nm in the visible and 1050/1240 nm in the NIR region) was used to retrieve snow grain size. Spectral albedos were retrieved using satellite reflectances and estimated grain size. A good agreement was observed between retrieved snow parameters and ground observed snow-meteorological conditions. The satellite retrieved grain sizes were compared with field spectroradiometer retrieved grain sizes and close results were found for lower Himalayan snow. The wavelength 1240 nm was found to be more suitable compared to 1050 nm for grain size retrieval along the steep slopes. The methodology was able to retrieve the spatial variations in snow parameters in different parts of western Himalaya which are due to snow climatic and terrain conditions of Himalaya. This methodology is of importance for operational snow cover and glacier monitoring in Himalayan region using space-borne and air-borne sensors.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Snow Grain Size Mapping Using Prisma Hyperspectral Data over the South Lhonak Glacier;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Retrieval of Snow Properties from Hyperspectral Data;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Evaluation of PRISMA Products Over Snow in the Alps and Antarctica;Earth and Space Science;2024-07

4. Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains;Atmospheric Chemistry and Physics;2024-05-03

5. Estimating Broadband Snow Albedo by an Asymptotic Radiative Transfer Model-Constrained Deep Learning Models;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3