Evidence for direct solar control of the mesopause dynamics through dayglow and radar measurements

Author:

Pant T. K.,Tiwari D.,Sridharan S.,Sridharan R.,Gurubaran S.,Subbarao K. S. V.,Sekar R.

Abstract

Abstract. The day-to-day measurements of the daytime intensities of hydroxyl (OH) Meinel (8-3) band airglow emissions at 731.6 and 740.2nm carried out from the equatorial station Thiruvananthapuram (8.5° N, 76.5° E, 0.5° dip) during the period of January-March 2001 have been investigated. This investigation provides evidence for the presence of a long period (≈16 days) wave modulating these intensities at the mesopause altitudes. Simultaneous radar measurements of zonal wind at ~87km, i.e. mesopause from Tirunelveli (8.7° N, 77.8° E, 0.33° dip), a location nearby, also reveal the presence of these long period oscillations. The daytime airglow and zonal wind undergo changes simultaneously. Similar modulations are seen in the solar 10.7cm flux also preceding dayglow and wind variabilities by 4-5 days. It is inferred in the present case that the changes in the solar flux are the cause of the generation of this long period wave in the atmosphere below the mesosphere. The oscillations in the measured dayglow intensities in the mesopause region and the winds at ~87km are resulting from the modulation caused by this wave in this region after a delay of 4-5 days.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3