Diurnal auroral occurrence statistics obtained via machine vision

Author:

Syrjäsuo M. T.,Donovan E. F.

Abstract

Abstract. Modern ground-based digital auroral All-Sky Imager (ASI) networks capture millions of images annually. Machine vision techniques are widely utilised in the retrieval of images from large data bases. Clearly, they can play an important scientific role in dealing with data from auroral ASI networks, facilitating both efficient searches and statistical studies. Furthermore, the development of automated techniques for identifying specific types of aurora opens up the potential of ASI control software that would change instrument operation in response to evolving geophysical conditions. In this paper, we describe machine vision techniques that we have developed for use on large auroral image data sets. We present the results of application of these techniques to a 350000 image subset of the CANOPUS Gillam ASI in the years 1993–1998. In particular, we obtain occurrence statistics for auroral arcs, patches, and Omega-bands. These results agree with those of previous manual auroral surveys.Key words. Ionosphere (Instruments and techniques) General (new fields)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3