Modeling of the in situ state of stress in elastic layered rock subject to stress and strain-driven tectonic forces

Author:

Roche Vincent,van der Baan Mirko

Abstract

Abstract. In this study we describe and compare eight different strategies to predict the depth variation of stress within a layered rock formation. This reveals the inherent uncertainties in stress prediction from elastic properties and stress measurements, as well as the geologic implications of the different models. The predictive strategies are based on well log data and in some cases on in situ stress measurements, combined with the weight of the overburden rock, the pore pressure, the depth variation in rock properties, and tectonic effects. We contrast and compare stresses predicted purely using theoretical models with those constrained by in situ measurements. We also explore the role of the applied boundary conditions that mimic two fundamental models of tectonic effects, namely the stress- or strain-driven models. In both models, layer-to-layer tectonic stress variations are added to initial predictions due to vertical variation in rock elasticity, consistent with natural observations, yet describe very different controlling mechanisms. Layer-to-layer stress variations are caused by either local elastic strain accommodation for the strain-driven model, or stress transfers for the stress-driven model. As a consequence, stress predictions can depend strongly on the implemented prediction philosophy and the underlying implicit and explicit assumptions, even for media with identical elastic parameters and stress measurements. This implies that stress predictions have large uncertainties, even if local measurements and boundary conditions are honored.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3