Scaling, similarity, and the fourth paradigm for hydrology
-
Published:2017-07-20
Issue:7
Volume:21
Page:3701-3713
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Peters-Lidard Christa D.ORCID, Clark Martyn, Samaniego LuisORCID, Verhoest Niko E. C.ORCID, van Emmerik TimORCID, Uijlenhoet RemkoORCID, Achieng KevinORCID, Franz Trenton E.ORCID, Woods RossORCID
Abstract
Abstract. In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm) and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modeling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing; describe a mutual information framework for testing these hypotheses; describe boundary condition, state, flux, and parameter data requirements across scales to support testing these hypotheses; and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.
Funder
Goddard Space Flight Center
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference125 articles.
1. Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., and Wagner, W.: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations, Remote Sens. Environ., 118, 215–226, https://doi.org/10.1016/j.rse.2011.11.017, 2012. 2. Bense, V. F., Read, T., Bour, O., Le Borgne, T., Coleman, T., Krause, S., Chalari, A., Mondanos, M., Ciocca, F., and Selker, J. S.: Distributed Temperature Sensing as a downhole tool in hydrogeology, Water Resour. Res., 52, 9259–9273, https://doi.org/10.1002/2016WR018869, 2016. 3. Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenije, H. H. G.: Patterns of similarity of seasonal water balances: A window into streamflow variability over a range of time scales, Water Resour. Res., 50, 5638–5661, https://doi.org/10.1002/2014WR015692, 2014. 4. Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004. 5. Berne, A., Uijlenhoet, R., and Troch, P. A.: Similarity analysis of subsurface flow response of hillslopes with complex geometry, Water Resour. Res., 41, W09410, https://doi.org/10.1029/2004WR003629, 2005.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|