Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE
-
Published:2017-07-14
Issue:7
Volume:21
Page:3525-3542
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Kochendorfer John, Nitu Rodica, Wolff Mareile, Mekis Eva, Rasmussen Roy, Baker Bruce, Earle Michael E.ORCID, Reverdin Audrey, Wong Kai, Smith Craig D.ORCID, Yang Daqing, Roulet Yves-Alain, Buisan Samuel, Laine Timo, Lee Gyuwon, Aceituno Jose Luis C., Alastrué Javier, Isaksen KetilORCID, Meyers Tilden, Brækkan Ragnar, Landolt Scott, Jachcik Al, Poikonen Antti
Abstract
Abstract. Although precipitation has been measured for many centuries, precipitation measurements are still beset with significant inaccuracies. Solid precipitation is particularly difficult to measure accurately, and wintertime precipitation measurement biases between different observing networks or different regions can exceed 100 %. Using precipitation gauge results from the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE), errors in precipitation measurement caused by gauge uncertainty, spatial variability in precipitation, hydrometeor type, crystal habit, and wind were quantified. The methods used to calculate gauge catch efficiency and correct known biases are described. Adjustments, in the form of transfer functions that describe catch efficiency as a function of air temperature and wind speed, were derived using measurements from eight separate WMO-SPICE sites for both unshielded and single-Alter-shielded precipitation-weighing gauges. For the unshielded gauges, the average undercatch for all eight sites was 0.50 mm h−1 (34 %), and for the single-Alter-shielded gauges it was 0.35 mm h−1 (24 %). After adjustment, the mean bias for both the unshielded and single-Alter measurements was within 0.03 mm h−1 (2 %) of zero. The use of multiple sites to derive such adjustments makes these results unique and more broadly applicable to other sites with various climatic conditions. In addition, errors associated with the use of a single transfer function to correct gauge undercatch at multiple sites were estimated.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference40 articles.
1. Alter, J. C.: Shielded storage precipitation gages, Mon. Weather Rev., 65, 262–265, 1937. 2. Chen, R., Liu, J., Kang, E., Yang, Y., Han, C., Liu, Z., Song, Y., Qing, W., and Zhu, P.: Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau, The Cryosphere, 9, 1995–2008, https://doi.org/10.5194/tc-9-1995-2015, 2015. 3. Colli, M., Rasmussen, R., Thériault, J. M., Lanza, L. G., Baker, C. B., and Kochendorfer, J.: An improved trajectory model to evaluate the collection performance of snow gauges, J. Appl. Meteorol. Clim., 54, 1826–1836, 2015. 4. Colli, M., Lanza, L. G., Rasmussen, R., and Theriault, J. M.: The Collection Efficiency of Shielded and Unshielded Precipitation Gauges. Part II: Modeling Particle Trajectories, J. Hydrometeorol., 17, 245-255, 2016. 5. Folland, C. K.: Numerical models of the raingauge exposure problem, field experiments and an improved collector design, Q. J. Roy. Meteor. Soc., 114, 1485–1516, 1988.
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|