Understanding and seasonal forecasting of hydrological drought in the Anthropocene
-
Published:2017-11-07
Issue:11
Volume:21
Page:5477-5492
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Yuan XingORCID, Zhang Miao, Wang Linying, Zhou TianORCID
Abstract
Abstract. Hydrological drought is not only caused by natural hydroclimate variability but can also be directly altered by human interventions including reservoir operation, irrigation, groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the Anthropocene are grand challenges due to complicated interactions among climate, hydrology and humans. In this paper, five decades (1961–2010) of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in north China. Human interventions decrease the correlation between hydrological and meteorological droughts, and make the hydrological drought respond to longer timescales of meteorological drought. Due to large water consumptions in the middle and lower reaches, there are 118–262 % increases in the hydrological drought frequency, up to 8-fold increases in the drought severity, 21–99 % increases in the drought duration and the drought onset is earlier. The non-stationarity due to anthropogenic climate change and human water use basically decreases the correlation between meteorological and hydrological droughts and reduces the effect of human interventions on hydrological drought frequency while increasing the effect on drought duration and severity. A set of 29-year (1982–2010) hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate-model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier skill score of 11–26 % against the latter for the probabilistic hydrological drought forecasting. In the Anthropocene, the skill for both approaches increases due to the dominant influence of human interventions that have been implicitly incorporated by the hydrological post-processing, while the difference between the two predictions decreases. This suggests that human interventions can outweigh the climate variability for the hydrological drought forecasting in the Anthropocene, and the predictability for human interventions needs more attention.
Funder
National Natural Science Foundation of China Ministry of Science and Technology of the People's Republic of China Chinese Academy of Sciences
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference54 articles.
1. AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T., and Lund, J.: Water and climate: Recognize anthropogenic drought, Nature, 524, 409–411, https://doi.org/10.1038/524409a, 2015. 2. Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought using standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, 2016. 3. Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT mission and its capabilities for land hydrology, Surv. Geophys., 37, 307–337, https://doi.org/10.1007/s10712-015-9346-y, 2016. 4. Bloomfield, J. P., Marchant, B. P., Bricker, S. H., and Morgan, R. B.: Regional analysis of groundwater droughts using hydrograph classification, Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, 2015. 5. Dutra, E., Magnusson, L., Wetterhall, F., Cloke, H. L., Balsamo, G., Boussetta, S., and Pappenberger, F.: The 2010–2011 drought in the Horn of African ECMWF reanalysis and seasonal forecast products, Int. J. Climatol., 33, 1720–1729, https://doi.org/10.1002/joc.3545, 2012.
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|