Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion

Author:

Yang Yun,Anderson Martha C.ORCID,Gao Feng,Hain Christopher R.,Semmens Kathryn A.,Kustas William P.,Noormets Asko,Wynne Randolph H.ORCID,Thomas Valerie A.,Sun Ge

Abstract

Abstract. As a primary flux in the global water cycle, evapotranspiration (ET) connects hydrologic and biological processes and is directly affected by water and land management, land use change and climate variability. Satellite remote sensing provides an effective means for diagnosing ET patterns over heterogeneous landscapes; however, limitations on the spatial and temporal resolution of satellite data, combined with the effects of cloud contamination, constrain the amount of detail that a single satellite can provide. In this study, we describe an application of a multi-sensor ET data fusion system over a mixed forested/agricultural landscape in North Carolina, USA, during the growing season of 2013. The fusion system ingests ET estimates from the Two-Source Energy Balance Model (TSEB) applied to thermal infrared remote sensing retrievals of land surface temperature from multiple satellite platforms: hourly geostationary satellite data at 4 km resolution, daily 1 km imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and biweekly Landsat thermal data sharpened to 30 m. These multiple ET data streams are combined using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to estimate daily ET at 30 m resolution to investigate seasonal water use behavior at the level of individual forest stands and land cover patches. A new method, also exploiting the STARFM algorithm, is used to fill gaps in the Landsat ET retrievals due to cloud cover and/or the scan-line corrector (SLC) failure on Landsat 7. The retrieved daily ET time series agree well with observations at two AmeriFlux eddy covariance flux tower sites in a managed pine plantation within the modeling domain: US-NC2 located in a mid-rotation (20-year-old) loblolly pine stand and US-NC3 located in a recently clear-cut and replanted field site. Root mean square errors (RMSEs) for NC2 and NC3 were 0.99 and 1.02 mm day−1, respectively, with mean absolute errors of approximately 29 % at the daily time step, 12 % at the monthly time step and 0.7 % over the full study period at the two flux tower sites. Analyses of water use patterns over the plantation indicate increasing seasonal ET with stand age for young to mid-rotation stands up to 20 years, but little dependence on age for older stands. An accounting of consumptive water use by major land cover classes representative of the modeling domain is presented, as well as relative partitioning of ET between evaporation (E) and transpiration (T) components obtained with the TSEB. The study provides new insights about the effects of management and land use change on water yield over forested landscapes.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3