Improving the Xin'anjiang hydrological model based on mass–energy balance

Author:

Fang Yuan-HaoORCID,Zhang XingnanORCID,Corbari Chiara,Mancini Marco,Niu Guo-Yue,Zeng WenzhiORCID

Abstract

Abstract. Conceptual hydrological models are preferable for real-time flood forecasting, among which the Xin'anjiang (XAJ) model has been widely applied in humid and semi-humid regions of China. Although the relatively simple mass balance scheme ensures a good performance of runoff simulation during flood events, the model still has some defects. Previous studies have confirmed the importance of evapotranspiration (ET) and soil moisture content (SMC) in runoff simulation. In order to add more constraints to the original XAJ model, an energy balance scheme suitable for the XAJ model was developed and coupled with the original mass balance scheme of the XAJ model. The detailed parameterizations of the improved model, XAJ-EB, are presented in the first part of this paper. XAJ-EB employs various meteorological forcing and remote sensing data as input, simulating ET and runoff yield using a more physically based mass–energy balance scheme. In particular, the energy balance is solved by determining the representative equilibrium temperature (RET), which is comparable to land surface temperature (LST). The XAJ-EB was evaluated in the Lushui catchment situated in the middle reach of the Yangtze River basin for the period between 2004 and 2007. Validation using ground-measured runoff data proves that the XAJ-EB is capable of reproducing runoff comparable to the original XAJ model. Additionally, RET simulated by XAJ-EB agreed well with moderate resolution imaging spectroradiometer (MODIS)-retrieved LST, which further confirms that the model is able to simulate the mass–energy balance since LST reflects the interactions among various processes. The validation results prove that the XAJ-EB model has superior performance compared with the XAJ model and also extends its applicability.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference91 articles.

1. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, 328 pp., 1998.

2. Ball, J. E. and Luk, K. C.: Modeling Spatial Variability of Rainfall over a Catchment, J. Hydrol. Eng., 3, 122–130, https://doi.org/10.1061/(ASCE)1084-0699(1998)3:2(122), 1998.

3. Bergström, S. and Singh, V.: Computer models of watershed hydrology, chap. The HBV model, 443–476, Water Resources Publications, 1995.

4. Berthet, L., Andréassian, V., Perrin, C., and Javelle, P.: How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments, Hydrol. Earth Syst. Sci., 13, 819–831, https://doi.org/10.5194/hess-13-819-2009, 2009.

5. Bhumralkar, C.: Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model, https://doi.org/10.1175/1520-0450(1975)014<1246:NEOTCO>2.0.CO;2, 1975.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3