Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish
-
Published:2017-08-14
Issue:8
Volume:21
Page:4073-4101
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Santiago José MaríaORCID, Muñoz-Mas Rafael, Solana-Gutiérrez JoaquínORCID, García de Jalón DiegoORCID, Alonso Carlos, Martínez-Capel FranciscoORCID, Pórtoles Javier, Monjo Robert, Ribalaygua Jaime
Abstract
Abstract. Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.
Funder
Ministerio de Agricultura, Alimentación y Medio Ambiente Ministerio de Economía y Competitividad European Commission
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference135 articles.
1. Ahmed, S. and Tsanis, I.: Hydrologic and Hydraulic Impact of Climate Change on Lake Ontario Tributary, Am. J. Water Resour., 4, 1–15, https://doi.org/10.12691/ajwr-4-1-1, 2016. 2. Allen, K. R.: Comparison of the Growth Rate of Brown Trout (Salmo trutta) in a New Zealand Stream with Experimental Fish in Britain, J. Anim. Ecol., 54, 487–495, https://doi.org/10.2307/4493, 1985. 3. Almodóvar, A., Nicola, G. G., Ayllón, D., and Elvira, B.: Global warming threatens the persistence of Mediterranean brown trout, Glob. Change Biol., 18, 1549–1560, https://doi.org/10.1111/j.1365-2486.2011.02608.x, 2011. 4. Angilletta Jr., M. J.: Thermal Adaptation: A Theoretical and Empirical Synthesis, Oxford University Press, New York, USA, 2009. 5. Arismendi, I., Safeeq, M., Dunham, J. B., and Johnson, S. L.: Can air temperature be used to project influences of climate change on stream temperature?, Environ. Res. Lett., 9, 084015, https://doi.org/10.1088/1748-9326/9/8/084015, 2014.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|