Soil water migration in the unsaturated zone of semiarid region in China from isotope evidence

Author:

Yang Yonggang,Fu Bojie

Abstract

Abstract. Soil water is an important driving force of the ecosystems, especially in the semiarid hill and gully region of the northwestern Loess Plateau in China. The mechanism of soil water migration in the reconstruction and restoration of Loess Plateau is a key scientific problem that must be solved. Isotopic tracers can provide valuable information associated with complex hydrological problems, difficult to obtain using other methods. In this study, the oxygen and hydrogen isotopes are used as tracers to investigate the migration processes of soil water in the unsaturated zone in an arid region of China's Loess Plateau. Samples of precipitation, soil water, plant xylems and plant roots are collected and analysed. The conservative elements deuterium (D) and oxygen (18O) are used as tracers to identify variable source and mixing processes. The mixing model is used to quantify the contribution of each end member and calculate mixing amounts. The results show that the isotopic composition of precipitation in the Anjiagou River basin is affected by isotopic fractionation due to evaporation. The isotopic compositions of soil waters are plotted between or near the local meteoric water lines, indicating that soil waters are recharged by precipitation. The soil water migration is dominated by piston-type flow in the study area and rarely preferential flow. Water migration exhibited a transformation pathway from precipitation to soil water to plant water. δ18O and δD are enriched in the shallow (< 20 cm depth) soil water in most soil profiles due to evaporation. The isotopic composition of xylem water is close to that of soil water at the depth of 40–60 cm. These values reflect soil water signatures associated with Caragana korshinskii Kom. uptake at the depth of 40–60 cm. Soil water from the surface soil layer (20–40 cm) comprised 6–12 % of plant xylem water, while soil water at the depth of 40–60 cm is the largest component of plant xylem water (ranging from 60 to 66 %), soil water below 60 cm depth comprised 8–14 % of plant xylem water and only 5–8 % is derived directly from precipitation. This study investigates the migration process of soil water, identifies the source of plant water and finally provides a scientific basis for identification of model structures and parameters. It can provide a scientific basis for ecological water demand, ecological restoration, and management of water resources.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3