Improvement of hydrological model calibration by selecting multiple parameter ranges
-
Published:2017-01-24
Issue:1
Volume:21
Page:393-407
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Wu Qiaofeng,Liu Shuguang,Cai Yi,Li Xinjian,Jiang Yangming
Abstract
Abstract. The parameters of hydrological models are usually calibrated to achieve good performance, owing to the highly non-linear problem of hydrology process modelling. However, parameter calibration efficiency has a direct relation with parameter range. Furthermore, parameter range selection is affected by probability distribution of parameter values, parameter sensitivity, and correlation. A newly proposed method is employed to determine the optimal combination of multi-parameter ranges for improving the calibration of hydrological models. At first, the probability distribution was specified for each parameter of the model based on genetic algorithm (GA) calibration. Then, several ranges were selected for each parameter according to the corresponding probability distribution, and subsequently the optimal range was determined by comparing the model results calibrated with the different selected ranges. Next, parameter correlation and sensibility were evaluated by quantifying two indexes, RC Y, X and SE, which can be used to coordinate with the negatively correlated parameters to specify the optimal combination of ranges of all parameters for calibrating models. It is shown from the investigation that the probability distribution of calibrated values of any particular parameter in a Xinanjiang model approaches a normal or exponential distribution. The multi-parameter optimal range selection method is superior to the single-parameter one for calibrating hydrological models with multiple parameters. The combination of optimal ranges of all parameters is not the optimum inasmuch as some parameters have negative effects on other parameters. The application of the proposed methodology gives rise to an increase of 0.01 in minimum Nash–Sutcliffe efficiency (ENS) compared with that of the pure GA method. The rising of minimum ENS with little change of the maximum may shrink the range of the possible solutions, which can effectively reduce uncertainty of the model performance.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference54 articles.
1. Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, "SHE", 1: History and philosophy of a physically-based, distributed modelling system, J. Hydrol., 87, 45–59, https://doi.org/10.1016/0022-1694(86)90114-9, 1986. 2. Abebe, N. A., Ogden, F. L., and Pradhan, N. R.: Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: Implications for parameter estimation, J. Hydrol., 389, 301–310, https://doi.org/10.1016/j.jhydrol.2010.06.007, 2010. 3. Bao, H., Wang, L., Li, Z., Zhao, L., and Zhang, G.: Hydrological daily rainfall-runoff simulation with BTOPMC model and comparison with Xin'anjiang model, Water Science and Engineering, 3, 121–131, https://doi.org/10.3882/j.issn.1674-2370.2010.02.001, 2010. 4. Beck, M. B.: Water quality modeling: A review of the analysis of uncertainty, Water Resour. Res., 23, 1393–1442, https://doi.org/10.1029/WR023i008p01393, 1987. 5. Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods, Water Resour. Res., 36, 3663–3674, https://doi.org/10.1029/2000WR900207, 2000.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|