The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS-2 model

Author:

Gal Laetitia,Grippa Manuela,Hiernaux Pierre,Pons Léa,Kergoat LaurentORCID

Abstract

Abstract. In recent decades, the Sahel has witnessed a paradoxical increase in surface water despite a general precipitation decline. This phenomenon, commonly referred to as the Sahelian paradox, is not completely understood yet. The role of cropland expansion due to the increasing food demand by a growing population has been often put forward to explain this situation for the cultivated Sahel. However, this hypothesis does not hold in pastoral areas where the same phenomenon is observed. Several other processes, such as the degradation of natural vegetation following the major droughts of the 1970s and the 1980s, the development of crusted topsoils, the intensification of the rainfall regime and the development of the drainage network, have been suggested to account for this situation. In this paper, a modeling approach is proposed to explore, quantify and rank different processes that could be at play in pastoral Sahel. The kinematic runoff and erosion model (KINEROS-2) is applied to the Agoufou watershed (245 km2), in the Gourma region in Mali, which underwent a significant increase of surface runoff during the last 60 years. Two periods are simulated, the past case (1960–1975) preceding the Sahelian drought and the present case (2000–2015). Surface hydrology and land cover characteristics for these two periods are derived by the analysis of aerial photographs, available in 1956, and high-resolution remote sensing images in 2011. The major changes identified are (1) a partial crusting of isolated dunes, (2) an increase of drainage network density, (3) a marked decrease in vegetation with the nonrecovery of tiger bush and vegetation growing on shallow sandy soils, and (4) important changes in soil properties with the apparition of impervious soils instead of shallow sandy soil. The KINEROS-2 model was parameterized to simulate these changes in combination or independently. The results obtained by this model display a significant increase in annual discharge between the past and the present case (p value < 0.001), which is consistent with observations, despite a slight overestimation of the past discharge. Mean annual discharges are estimated at 0.51  ×  106 m3 (2.1 mm yr−1) and 3.29  ×  106 m3 (13.4 mm yr−1) for past and present, respectively. Changes in soil properties and vegetation cover (tiger bush thickets and grassland on shallow sandy soil) are found to be the main factors causing this increase of simulated runoff, with the drainage network development contributing to a lesser extent but with a positive feedback. These results shed a new light on the Sahelian paradox phenomenon in the absence of land use change and call for further tests in other areas and/or with other models. The synergetic processes highlighted here could play a role in other Sahelian watersheds where runoff increase has been also observed.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference104 articles.

1. Abdourhamane Touré, A., Guillon, R., Garba, Z., Rajot, J. L., Petit, C., Bichet, V., Durand, A., and Sebag, D.: Sahelian landscape evolution during the six last decades in the Niamey vicinity: from the bush disappearing to the soil crusting, Pangea, 47, 35–40, 2011.

2. Aich, V., Liersch, S., Vetter, T., Andersson, J., Müller, E., and Hattermann, F.: Climate or Land Use? – Attribution of Changes in River Flooding in the Sahel Zone, Water, 7, 2796–2820, https://doi.org/10.3390/w7062796, 2015.

3. Albergel, J.: Sécheresse, désertification et ressources en eau de surface – Application aux petits bassins du Burkina Faso, in: The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources, vol. 168, IAHS Publications, Vancouver, Canada, 355–441, 1987.

4. Al-Qurashi, A., McIntyre, N., Wheater, H., and Unkrich, C.: Application of the Kineros2 rainfall-runoff model to an arid catchment in Oman, J. Hydrol., 355, 91–105, https://doi.org/10.1016/j.jhydrol.2008.03.022, 2008.

5. Anyamba, A., Justice, C., Tucker, C. J., and Mahoney, R.: Seasonal to interannual variability of vegetation and fires at SAFARI-2000 sites inferred from advanced very high resolution rediometer time series data, J. Geophys. Res., 108, 8507, https://doi.org/10.1029/2002JD002464, 2003.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3