The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins
-
Published:2017-12-15
Issue:12
Volume:21
Page:6379-6399
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Sorí Rogert,Nieto Raquel,Drumond Anita,Vicente-Serrano Sergio M.,Gimeno Luis
Abstract
Abstract. The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins (IRB, GRB, and BRB respectively) in the South Asian region was investigated. The 3-dimensional model FLEXPART v9.0 was utilized. An important advantage of this model is that it permits the computation of the freshwater budget on air parcel trajectories both backward and forward in time from 0.1 to 1000 hPa in the atmospheric vertical column. The analysis was conducted for the westerly precipitation regime (WPR) (November–April) and the monsoonal precipitation regime (MPR) (May–October) in the period from 1981 to 2015. The main terrestrial and oceanic climatological moisture sources for the IRB, GRB, and BRB and their contribution to precipitation over the basins were identified. For the three basins, the most important moisture sources for precipitation are (i) in the continental regions, the land masses to the west of the basins (in this case called western Asia), the Indian region (IR), and the basin itself, and (ii) from the ocean, the utmost sources being the Indian Ocean (IO) and the Bay of Bengal (BB), and it is remarkable that despite the amount of moisture reaching the Indus and Ganges basins from land sources, the moisture supply from the IO seems to be first associated with the rapid increase or decrease in precipitation over the sources in the MPR. The technique of the composites was used to analyse how the moisture uptake values spatially vary from the sources (the budget of evaporation minus precipitation (E − P) was computed in a backward experiment from the basins) but during the pre-onset and pre-demise dates of the monsoonal rainfall over each basin; this confirmed that over the last days of the monsoon at the basins, the moisture uptake areas decrease in the IO. The Indian region, the Indian Ocean, the Bay of Bengal, and the basins themselves are the main sources of moisture responsible for negative (positive) anomalies of moisture contribution to the basins during composites of driest (wettest) WPR and MPR.
Funder
Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference85 articles.
1. Ananthakrishnan, R. and Soman, M. K.: The onset of the southwest monsoon over Kerala: 1901–1980, J. Climatol., 8, 283–296, 1988. 2. Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteor. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864, 2011. 3. Bisselink, B. and Dolman, A. J.: Precipitation Recycling: Moisture Sources over Europe using ERA-40 Data, J. Hydrometeorol., 9, 1073–1083, https://doi.org/10.1175/2008JHM962.1, 2008. 4. Bosilovich, M. G., Sud, Y. C., Schubert, S. D., and Walker, G. K.: Numerical simulation of the large-scale North American monsoon water sources, J. Geophys. Res., 108, 8614, https://doi.org/10.1029/2002JD003095, 2003. 5. Castillo, R., Nieto, R., Drumond, A., and Gimeno, L.: Estimating the Temporal Domain when the Discount of the Net Evaporation Term Affects the Resulting Net Precipitation Pattern in the Moisture Budget Using a 3-D Lagrangian Approach, PLoS ONE, 9, e99046, https://doi.org/10.1371/journal.pone.0099046, 2014.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|