Rainfall dynamics at different temporal scales: A chaotic perspective

Author:

Sivakumar B.

Abstract

Abstract. This study of the behaviour of rainfall dynamics at different temporal scales identifies the type of approach most suitable for transformation of rainfall data from one scale to another. Rainfall data of four different temporal scales, i.e. daily, 2-day, 4-day and 8-day, observed over a period of about 25 years at the Leaf River basin, Mississippi, USA, are analysed. The correlation dimension method is employed to identify the behaviour of rainfall dynamics. The finite correlation dimensions obtained for the four rainfall series (4.82, 5.26, 6.42 and 8.87, respectively) indicate the possible existence of chaotic behaviour in the rainfall observed at the four scales. A possible implication of this might be that the rainfall processes at these scales are related through a chaotic (scale-invariant) behaviour. However, a comparison of the correlation dimension and coefficient of variation of each of the time series reveals an inverse relationship between the two (higher dimension for lower coefficient of variation and vice versa). The presence of a large number of zeros in the higher resolution time series (that could result in an underestimation of the dimension) and the possible presence of a higher level of noise in the lower resolution time series (that could result in an overestimation of the dimension) might account for such results. In view of these problems, it is concluded that the results must be verified using other chaos identification methods and the existence of chaos must be substantiated with additional evidence. Keywords: rainfall, chaos, scaling, correlation dimension, number of variables, coefficient of variation, data size, noise, zeros

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3