Stochastic generation of annual, monthly and daily climate data: A review

Author:

Srikanthan R.,McMahon T. A.

Abstract

Abstract. The generation of rainfall and other climate data needs a range of models depending on the time and spatial scales involved. Most of the models used previously do not take into account year to year variations in the model parameters. Long periods of wet and dry years were observed in the past but were not taken into account. Recently, Thyer and Kuczera (1999) developed a hidden state Markov model to account for the wet and dry spells explicitly in annual rainfall. This review looks firstly at traditional time series models and then at the more complex models which take account of the pseudo-cycles in the data. Monthly rainfall data have been generated successfully by using the method of fragments. The main criticism of this approach is the repetitions of the same yearly pattern when only a limited number of years of historical data are available. This deficiency has been overcome by using synthetic fragments but this brings an additional problem of generating the right number of months with zero rainfall. Disaggregation schemes are effective in obtaining monthly data but the main problem is the large number of parameters to be estimated when dealing with many sites. Several simplifications have been proposed to overcome this problem. Models for generating daily rainfall are well developed. The transition probability matrix method preserves most of the characteristics of daily, monthly and annual characteristics and is shown to be the best performing model. The two-part model has been shown by many researchers to perform well across a range of climates at the daily level but has not been tested adequately at monthly or annual levels. A shortcoming of the existing models is the consistent underestimation of the variances of the simulated monthly and annual totals. As an alternative, conditioning model parameters on monthly amounts or perturbing the model parameters with the Southern Oscillation Index (SOI) result in better agreement between the variance of the simulated and observed annual rainfall and these approaches should be investigated further. As climate data are less variable than rainfall, but are correlated among themselves and with rainfall, multisite-type models have been used successfully to generate annual data. The monthly climate data can be obtained by disaggregating these annual data. On a daily time step at a site, climate data have been generated using a multisite type model conditional on the state of the present and previous days. The generation of daily climate data at a number of sites remains a challenging problem. If daily rainfall can be modelled successfully by a censored power of normal distribution then the model can be extended easily to generate daily climate data at several sites simultaneously. Most of the early work on the impacts of climate change used historical data adjusted for the climate change. In recent studies, stochastic daily weather generation models are used to compute climate data by adjusting the parameters appropriately for the future climates assumed.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 242 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3