Spectral characterisation of hydrothermal alteration associated with sediment-hosted Cu–Ag mineralisation in the central European Kupferschiefer

Author:

Géring Léa,Kirsch MoritzORCID,Thiele Samuel,De Lima Ribeiro AndréaORCID,Gloaguen RichardORCID,Gutzmer Jens

Abstract

Abstract. The analysis of hydrothermal alteration in exploration drill cores allows for fluid–rock interaction processes to be traced, for fluid flow paths to be identified, and thus for vectors in mineral systems to be determined. Hyperspectral imaging techniques are increasingly being employed to fill the scale gap between lab-based petrographic or geochemical analyses and the typical size of exploration targets. Hyperspectral imaging permits the rapid, cost-efficient, and continuous characterisation of alteration mineralogy and texture along entire drill cores, with a spatial sampling of a few millimetres. In this contribution, we present the results of an exploratory study on three mineralised drill cores from the Spremberg–Graustein Kupferschiefer-type Cu–Ag deposit in the Lusatia region of Germany. We demonstrate that hyperspectral imaging is well-suited to recognising and tracking the effects of hydrothermal alteration associated with strata-bound hydrothermal mineralisation. Micro X-ray fluorescence spectrometry was used to corroborate the alteration mineral assemblages identified in hyperspectral data acquired in the visible, near- (400 to 970 nm), shortwave (970 to 2500 nm), mid-wave (2700 to 5300 nm), and longwave infrared (7700 to 12 300 nm). We identified two main shortcomings of the technique, namely the overlapping of some mineral features (e.g. carbonate and illite absorption in the shortwave infrared) and the darkness of the organic-matter-rich dolostones and shales that results in low reflectance. Nevertheless, spectral features associated with iron oxide, kaolinite, sulfate, and carbonates were successfully identified and mapped. We identified different markers of hydrothermal alteration spatially associated with or stratigraphically adjacent to Cu–Ag mineralisation. Importantly, we can clearly distinguish two mineralogically distinct styles of alteration (hematite and ferroan carbonate) that bracket high-grade Cu–Ag mineralisation. Intensive hydrothermal alteration is characterised by the occurrence of well-crystallised kaolinite in the sandstone units immediately below the Kupferschiefer horizon sensu stricto. Proximal Fe-carbonate and kaolinite alteration have not previously been documented for the high-grade Cu–Ag deposits of the central European Kupferschiefer, whereas hematite alteration is well-known in Kupferschiefer-type ore deposits. The latter marks the flow path of oxidising, metal-bearing hydrothermal fluids towards the site of hydrothermal sulfide mineralisation. In contrast, ferroan carbonate alteration in carbonate rocks located above the main mineralised zone is interpreted as a mark of hydrothermal fluid discharge from the mineralising system. Although this study is limited to a small number of drill cores, our results suggest that hyperspectral imaging techniques may be used to identify vectors towards high-grade Cu–Ag mineralisation in Kupferschiefer-type mineral systems.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3