Multivariate analysis of nonlinearity in sandbar behavior

Author:

Pape L.,Ruessink B. G.

Abstract

Abstract. Alongshore sandbars are often present in the nearshore zones of storm-dominated micro- to mesotidal coasts. Sandbar migration is the result of a large number of small-scale physical processes that are generated by the incoming waves and the interaction between the wave-generated processes and the morphology. The presence of nonlinearity in a sandbar system is an important factor determining its predictability. However, not all nonlinearities in the underlying system are equally expressed in the time-series of sandbar observations. Detecting the presence of nonlinearity in sandbar data is complicated by the dependence of sandbar migration on the external wave forcings. Here, a method for detecting nonlinearity in multivariate time-series data is introduced that can reveal the nonlinear nature of the dependencies between system state and forcing variables. First, this method is applied to four synthetic datasets to demonstrate its ability to qualify nonlinearity for all possible combinations of linear and nonlinear relations between two variables. Next, the method is applied to three sandbar datasets consisting of daily-observed cross-shore sandbar positions and hydrodynamic forcings, spanning between 5 and 9 years. Our analysis reveals the presence of nonlinearity in the time-series of sandbar and wave data, and the relative importance of nonlinearity for each variable. The relation between the results of each sandbar case and patterns in bar behavior are discussed, together with the effects of noise. The small effect of nonlinearity implies that long-term prediction of sandbar positions based on wave forcings might not require sophisticated nonlinear models.

Publisher

Copernicus GmbH

Subject

General Medicine

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3