Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps

Author:

Castebrunet H.,Eckert N.,Giraud G.

Abstract

Abstract. Snow avalanche activity is controlled to a large extent by snow and weather patterns. However, its response to climate fluctuations remains poorly documented. Previous studies have focused on direct extraction of trends in avalanche and winter climate data, and this study employs a time-implicit method to model annual avalanche activity in the French Alps during the 1958–2009 period from its most representative climatic drivers. Modelled snow and weather data for different elevations and aspects are considered as covariates that explain actual observed avalanche counts, modelled instability indexes, and a combination of both avalanche activity indicators. These three series present relatively similar fluctuations over the period and good consistency with historically harsh winters. A stepwise procedure is used to obtain regression models that accurately represent trends as well as high and low peaks with a small number of physically meaningful covariates, showing their climatic relevance. The activity indicators and their regression models seen as time series show, within a high interannual variability, a predominant bell-shaped pattern presumably related to a short period of colder and snowier winters around 1980, as well as a very slight but continuous increase between 1975 and 2000 concomitant with warming. Furthermore, the regression models quantify the respective weight of the different covariates, mostly temperature anomalies and south-facing snowpack characteristics to explain the trends and most of the exceptional winters. Regional differences are discussed as well as seasonal variations between winter and spring activity and confirm rather different snow and weather regimes influencing avalanche activity over the Northern and Southern Alps, depending on the season.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3