The nitrate aerosol field over Europe: simulations with an atmospheric chemistry-transport model of intermediate complexity

Author:

Schaap M.,van Loon M.,ten Brink H. M.,Dentener F. J.,Builtjes P. J. H.

Abstract

Abstract. Nitrate is an important component of fine aerosols in Europe. We present a model simulation for the year 1995 in which we account for the formation of the ammonium nitrate, a semi volatile component. For this purpose, LOTOS, a chemistry-transport model of intermediate complexity, was extended with a thermodynamic equilibrium module and additional relevant processes to account for aerosol formation and deposition. Our earlier analysis of data on (ammonium) nitrate in Europe was used for model evaluation. During winter, fall and especially spring high nitrate levels are projected over north western, central and eastern Europe. During winter nitrate concentrations are highest in the Po valley, Italy. This is in accordance with the field that was constructed from the data. In winter nitric acid, the precursor for aerosol nitrate, is formed through heterogeneous reactions on the surface of aerosols. Appreciable ammonium nitrate concentrations in summer are limited to those areas with high ammonia emissions, e.g. The Netherlands, since high ammonia concentrations are necessary to stabilise this aerosol component at high temperatures. Averaged over all stations the model reproduces the measured concentrations for NO3, SO4, NH4, TNO3, TNH4 and SO2 within 20%. The daily variation is captured well, albeit that the model does not always represents the amplitude of single events. The model underestimates wet deposition which was attributed to the crude representation of cloud processes. The treatment of ammonia was found to be the major source for uncertainties in the model representation of secondary aerosols. Also, inclusion of sea salt is necessary to properly assess the nitrate and nitric acid levels in marine areas. Over Europe the annual forcing by nitrate is calculated to be 25% of that by sulphate. In summer nitrate is found to be regionally important, e.g. in The Netherlands, where the forcing of nitrate and sulphate are calculated to be equal. In winter, spring and fall the nitrate forcing over Europe is about half that by sulphate. Over north western Europe and the alpine region the forcing by nitrate was calculated to be similar to that of sulphate. Overall, nitrate forcing is significant and should be taken into account to estimate the impact of regional climate change in Europe.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3