1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M. Ghemawat, S., Goodfellow, I.,
Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,
Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,
Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org/ (last access: 8 June 2021),
2015.
2. Beucler, T., Rasp, S., Pritchard, M., and Gentine, P.: Achieving
Conservation of Energy in Neural Network Emulators for Climate Modeling,
arXiv, https://arxiv.org/abs/1906.06622 (last
access: 17 June 2020), 2019.
3. Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., and Gentine, P.:
Enforcing analytic constraints in neural networks emulating physical
systems, Phys. Rev. Lett., 126, 098302, https://doi.org/10.1103/PhysRevLett.126.098302, 2021.
4. Brenowitz, N. D. and Bretherton, C. S.: Prognostic Validation of a Neural
Network Unified Physics Parameterization, Geophys. Res. Lett., 45,
6289–6298, https://doi.org/10.1029/2018GL078510, 2018.
5. Carter, W. P.: A detailed mechanism for the gas-phase atmospheric reactions
of organic compounds, Atmos. Environ., 24, 481–518,
https://doi.org/10.1016/0960-1686(90)90005-8, 1990.