Development and evaluation of an advanced National Air Quality Forecasting Capability using the NOAA Global Forecast System version 16

Author:

Campbell Patrick C.ORCID,Tang YouhuaORCID,Lee Pius,Baker Barry,Tong Daniel,Saylor Rick,Stein Ariel,Huang Jianping,Huang Ho-Chun,Strobach Edward,McQueen Jeff,Pan LiORCID,Stajner IvankaORCID,Sims Jamese,Tirado-Delgado Jose,Jung Youngsun,Yang Fanglin,Spero Tanya L.ORCID,Gilliam Robert C.

Abstract

Abstract. A new dynamical core, known as the Finite-Volume Cubed-Sphere (FV3) and developed at both NASA and NOAA, is used in NOAA's Global Forecast System (GFS) and in limited-area models for regional weather and air quality applications. NOAA has also upgraded the operational FV3GFS to version 16 (GFSv16), which includes a number of significant developmental advances to the model configuration, data assimilation, and underlying model physics, particularly for atmospheric composition to weather feedback. Concurrent with the GFSv16 upgrade, we couple the GFSv16 with the Community Multiscale Air Quality (CMAQ) model to form an advanced version of the National Air Quality Forecasting Capability (NAQFC) that will continue to protect human and ecosystem health in the US. Here we describe the development of the FV3GFSv16 coupling with a “state-of-the-science” CMAQ model version 5.3.1. The GFS–CMAQ coupling is made possible by the seminal version of the NOAA-EPA Atmosphere–Chemistry Coupler (NACC), which became a major piece of the next operational NAQFC system (i.e., NACC-CMAQ) on 20 July 2021. NACC-CMAQ has a number of scientific advancements that include satellite-based data acquisition technology to improve land cover and soil characteristics and inline wildfire smoke and dust predictions that are vital to predictions of fine particulate matter (PM2.5) concentrations during hazardous events affecting society, ecosystems, and human health. The GFS-driven NACC-CMAQ model has significantly different meteorological and chemical predictions compared to the previous operational NAQFC, where evaluation of NACC-CMAQ shows generally improved near-surface ozone and PM2.5 predictions and diurnal patterns, both of which are extended to a 72 h (3 d) forecast with this system.

Funder

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

General Medicine

Reference155 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3