Geologic characterization of nonconformities using outcrop and core analogs: hydrologic implications for injection-induced seismicity

Author:

Petrie Elizabeth S.ORCID,Bradbury Kelly K.,Cuccio Laura,Smith Kayla,Evans James P.,Ortiz John P.,Kerner Kellie,Person Mark,Mozley Peter

Abstract

Abstract. The occurrence of induced earthquakes in crystalline rocks kilometers from deep wastewater injection wells poses questions about the influence nonconformity contacts have on the downward and lateral transmission of pore-fluid pressure and poroelastic stresses. We hypothesize that structural and mineralogical heterogeneities at the sedimentary–crystalline rock nonconformity control the degree to which fluids, fluid pressure, and associated poroelastic stresses are transmitted over long distances across and along the nonconformity boundary. We examined the spatial distribution of physical and chemical heterogeneities in outcrops and core samples of the Great Unconformity in the midcontinent of the United States, capturing a range of tectonic settings and rock properties that we use to characterize the degree of past fluid communication and the potential for future communication. We identify three end-member nonconformity types that represent a range of properties that will influence direct fluid pressure transmission and poroelastic responses far from the injection site. These nonconformity types vary depending on whether the contact is sharp and minimally altered (Type 0), dominated by phyllosilicates (Type I), or secondary non-phyllosilicate mineralization (Type II). Our observations provide geologic constraints for modeling fluid migration and the associated pressure communication and poroelastic effects at large-scale disposal projects by providing relevant subsurface properties and much needed data regarding common alteration minerals that may interact readily with brines or reactive fluids.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Reference71 articles.

1. Abousif, A. M. A.: Mineral and geochemical attributes of the midcontinent rift sequence; An application for deep carbon dioxide sequestration, Ph.D. Dissertation, Colorado School of Mines, Golden, 240 p., 2015.

2. Anderson, R.: U.S. Geological Survey Airborne Study of Northeast Iowa, Iowa Geological & Water Survey, available at: https://www.iowadnr.gov/Portals/idnr/uploads/geology/home/NE_Iowa_mineral_survey.pdf (last access: 20 June 2020), 2012.

3. Armstrong, A. K. and Mamet, B. L.: Biostratigraphy of the Arroyo Peñasco Group, Lower Carboniferous (Mississippian), north-central New Mexico, Ghost Ranch N. M. Geol. Soc. Guidebook, 25, 145–158, 1974.

4. Baltz, E. H. and Myers, D. A.: Stratigraphic framework of upper Paleozoic rocks, southeastern Sangre de Cristo Mountains, New Mexico, with a section on speculations and implications for regional interpretation of Ancestral Rocky Mountains paleotectonics, New Mexico, Bureau of Mines and Mineral Resources Memoir 48, 272 p., Socorro, New Mexico, USA, 1999.

5. Barnes, D. A., Bacon, D. H., and Kelley, S. R.: Geological sequestration of carbon dioxide in the Cambrian Mount Simon Sandstone: Regional storage capacity, site characterization, and large-scale injection feasibility, Michigan Basin, Environ. Geosci., 16, 163–183, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3