Effects of the super-powerful tropospheric western Pacific phenomenon of September–October 2018 on the ionosphere over China: results from oblique sounding

Author:

Chernogor Leonid F.,Garmash Kostiantyn P.ORCID,Guo Qiang,Rozumenko Victor T.ORCID,Zheng YuORCID

Abstract

Abstract. Doppler measurements at oblique propagation paths from the city of Harbin, the People's Republic of China (PRC), to 10 high-frequency (HF) radio broadcast stations in the PRC, Japan, Mongolia, and the Republic of Korea captured the response in the ionosphere to the activity of the super typhoon, Typhoon Kong-rey, from 30 September to 6 October 2018. The Harbin Engineering University coherent software-defined radio system generates the database containing the complex amplitudes of the radio signals that have been acquired along 14 propagation paths since 2018. The complex amplitudes are used for calculating the temporal dependences of the Doppler spectra and signal amplitudes, and the Doppler spectra are used to plot the Doppler shift as a function of time, fD(t), for all rays. The scientific objectives of this study are to reveal the possible perturbations caused by the activity of Typhoon Kong-rey and to estimate the magnitudes of wave parameters of the ionospheric plasma and radio signals. The amplitudes, fDa, of the Doppler shift variations were observed to noticeably increase (factor of ∼2–3) on 1–2 and 5–6 October 2018, while the 20–120 min periods, T, of the Doppler shift variations suggest that the wavelike disturbances in the ionosphere are caused by atmospheric gravity waves. The periods and amplitudes of quasi-sinusoidal variations in the Doppler shift, which have been determined for all propagation paths, may be used to estimate the amplitudes, δNa, of quasi-sinusoidal variations in the electron density. Thus, T≈20 min and fDa≈0.1 Hz yield δNa≈0.4 %, whereas T≈30 min and fDa≈0.2 Hz give δNa≈1.2 %. If T≈60 min and fDa≈0.5 Hz, then δNa≈6 %. The periods T are found to change within the 15–120 min limits, and the Doppler shift amplitudes, fDa, show variability within the 0.05–0.4 Hz limits.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3