Statistical distribution of mirror-mode-like structures in the magnetosheaths of unmagnetized planets – Part 2: Venus as observed by the Venus Express spacecraft

Author:

Volwerk MartinORCID,Simon Wedlund CyrilORCID,Mautner David,Rojas Mata SebastiánORCID,Stenberg Wieser GabriellaORCID,Futaana YoshifumiORCID,Mazelle ChristianORCID,Rojas-Castillo DianaORCID,Bertucci César,Delva Magda

Abstract

Abstract. In this series of papers, we present statistical maps of mirror-mode-like (MM) structures in the magnetosheaths of Mars and Venus and calculate the probability of detecting them in spacecraft data. We aim to study and compare them with the same tools and a similar payload at both planets. We consider their dependence on extreme ultraviolet (EUV) solar flux levels (high and low). The detection of these structures is done through magnetic-field-only criteria, and ambiguous determinations are checked further. In line with many previous studies at Earth, this technique has the advantage of using one instrument (a magnetometer) with good time resolution, facilitating comparisons between planetary and cometary environments. Applied to the magnetometer data of the Venus Express (VEX) spacecraft from May 2006 to November 2014, we detect structures closely resembling MMs lasting in total more than 93 000 s, corresponding to about 0.6 % of VEX's total time spent in Venus's plasma environment. We calculate MM-like occurrences normalized to the spacecraft's residence time during the course of the mission. Detection probabilities are about 10 % at most for any given controlling parameter. In general, MM-like structures appear in two main regions: one behind the shock and the other close to the induced magnetospheric boundary, as expected from theory. For solar maximum, the active region behind the bow shock is further inside the magnetosheath, near the solar minimum bow shock location. The ratios of the observations during solar minimum and maximum are slightly dependent on the depth ΔB/B of the structures; deeper structures are more prevalent at solar maximum. A dependence on solar EUV (F10.7) flux is also present, where at higher F10.7 flux the events occur at higher values than the daily-average value of the flux. The main dependence of the MM-like structures is on the condition of the bow shock: for quasi-perpendicular conditions, the MM occurrence rate is higher than for quasi-parallel conditions. However, when the shock becomes “too perpendicular” the chance of observing MM-like structures reduces again. Combining the plasma data from the Ion Mass Analyser (IMA on board Venus Express) with the magnetometer data shows that the instability criterion for MMs is reduced in the two main regions where the structures are measured, whereas it is still enhanced in the region between these two regions, implying that the generation of MMs is transferring energy from the particles to the field. With the addition of the Electron Spectrometer (ELS on board Venus Express) data, it is possible to show that there is an anti-phase between the magnetic field strength and the density for the MM-like structures. This study is Part 2 of a series of papers on the magnetosheaths of Mars and Venus.

Funder

Austrian Science Fund

Swedish National Space Agency

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference65 articles.

1. Anderson, B. J. and Fuselier, S. A.: Magnetic pulsations from 0.1 to 4.0 Hz and associated plasma properties in the Earth's subsolar magnetosheath and plasma depletion layer, J. Geophys. Res., 98, 1461–1480, https://doi.org/10.1029/92JA02197, 1993. a

2. Anderson, B. J. and Fuselier, S. A.: Erratum: “Magnetic pulsations from 0.1 to 4.0 Hz and associated plasma properties in the Earth's subsolar magnetosheath and plasma depletion layer” [J. Geophys. Res. 98, 1461–1479 (1993)], J. Geophys. Res., 99, 6149–6150, https://doi.org/10.1029/93JA03041, 1994. a

3. Anderson, B. J., Fuselier, S. A., Gary, S. P., and Denton, R. E.: Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer, J. Geophys. Res., 99, 5877–5892, https://doi.org/10.1029/93JA02827, 1994. a

4. Bader, A., Stenberg Wieser, G., André, M., Wieser, M., Futaana, Y., Persson, M., Nilsson, H., and Zhang, T. L.: Proton Temperature Anisotropies in the Plasma Environment of Venus, J. Geophys. Res., 124, 3312–3330, https://doi.org/10.1029/2019JA026619, 2019. a, b, c

5. Barabash, S., Sauvaud, J.-A., Gunell, H., Andersson, H., Grigoriev, A., Brinkfeldt, K., Holmström, M., Lundin, R., Yamauchi, M., Asamura, K., Baumjohann, W., Zhang, T., Coates, A., Linder, D., Kataria, D., Curtis, C., Hsieh, K., Sandel, B., Fedorov, A., Mazelle, C., Thocaven, J.-J., Grande, M., Koskinen, H. E., Kallio, E., Säles, T., Riihela, P., Kozyra, J., Krupp, N., Woch, J., Luhmann, J., McKenna-Lawlor, S., Orsini, S., Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt, P., Russell, C., Szego, K., Winningham, J., Frahm, R., Scherrer, J., Sharber, J., Wurz, P., and Bochsler, P.: The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus Express mission, Planet. Space Sci., 55, 1772–1792, https://doi.org/10.1016/j.pss.2007.01.014, 2007. a, b, c

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3