Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea

Author:

Reale MarcoORCID,Cossarini Gianpiero,Lazzari PaoloORCID,Lovato Tomas,Bolzon Giorgio,Masina SimonaORCID,Solidoro Cosimo,Salon Stefano

Abstract

Abstract. The projected warming, nutrient decline, changes in net primary production, deoxygenation and acidification of the global ocean will affect marine ecosystems during the 21st century. Here, the climate change-related impacts on the marine ecosystems of the Mediterranean Sea in the middle and at the end of the 21st century are assessed using high-resolution projections of the physical and biogeochemical state of the basin under Representative Concentration Pathways (RCPs) 4.5 and 8.5. In both scenarios, the analysis shows changes in the dissolved nutrient contents of the euphotic and intermediate layers of the basin, net primary production, phytoplankton respiration and carbon stock (including phytoplankton, zooplankton, bacterial biomass and particulate organic matter). The projections also show uniform surface and subsurface reductions in the oxygen concentration driven by the warming of the water column and by the increase in ecosystem respiration as well as an acidification signal in the upper water column linked to the increase in the dissolved inorganic carbon content of the water column due to CO2 absorption from the atmosphere and the increase in respiration. The projected changes are stronger in the RCP8.5 (worst-case) scenario and, in particular, in the eastern Mediterranean due to the limited influence of the exchanges in the Strait of Gibraltar in that part of the basin. On the other hand, analysis of the projections under the RCP4.5 emission scenario shows a tendency to recover the values observed at the beginning of the 21st century for several biogeochemical variables in the second half of the period. This result supports the idea – possibly based on the existence in a system such as the Mediterranean Sea of a certain buffer capacity and renewal rate – that the implementation of policies for reducing CO2 emission could indeed be effective and could contribute to the foundation of ocean sustainability science and policies.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3