Airborne intercomparison of HO<sub>x</sub> measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS

Author:

Ren X.,Mao J.,Brune W. H.,Cantrell C. A.,Mauldin III R. L.,Hornbrook R. S.,Kosciuch E.,Olson J. R.,Crawford J. H.,Chen G.,Singh H. B.

Abstract

Abstract. The hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF) spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS) for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS) for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by ultraviolet (UV) light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2σ) for the LIF instrument, ±65% (2σ) for the SI-CIMS instrument, and ±50% (2σ) for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 104 cm−3 with a correlation coefficient r2 = 0.72 for OH, and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol−1) with a correlation coefficient r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some similarities for both the CIMS and LIF measurements. First, the observed-to-modeled HO2 ratio increases greatly for higher NO mixing ratios, indicating that the model may not properly account for HOx sources that correlate with NO. Second, the observed-to-modeled OH ratio increases with increasing isoprene mixing ratios, suggesting either incomplete understanding of isoprene chemistry in the model or interferences in the measurements in environments where biogenic emissions dominate ambient volatile organic compounds.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3