High-resolution distributions of O<sub>2</sub> / Ar on the northern slope of the South China Sea and estimates of net community production

Author:

Qin Chuan,Zhang Guiling,Zheng Wenjing,Han Yu,Liu Sumei

Abstract

Abstract. The dissolved oxygen-to-argon ratio (O2∕Ar) in the oceanic mixed layer has been widely used to estimate net community production (NCP), which is the difference between gross primary production and community respiration; it is a measure of the strength of the biological pump. In order to obtain the high-resolution distribution of NCP and improve our understanding of its regulating factors in the slope region of the northern South China Sea (SCS), we conducted continuous measurements of dissolved O2, Ar, and CO2 with membrane inlet mass spectrometry (MIMS) during two cruises in October 2014 and June 2015. An overall autotrophic condition was observed in the study region in both cruises with an average Δ(O2∕Ar) of 1.1 % ± 0.9 % in October 2014 and 2.7 % ± 2.8 % in June 2015. NCP was on average 11.5 ± 8.7 mmol C m−2 d−1 in October 2014 and 11.6 ± 12.7 mmol C m−2 d−1 in June 2015. Correlations between dissolved inorganic nitrogen (DIN), Δ(O2∕Ar), and NCP were observed in both cruises, indicating that NCP is subject to the nitrogen limitation in the study region. In June 2015, we observed a rapid response of the ecosystem to the episodic nutrient supply induced by eddies. Eddy-entrained shelf water intrusion, which supplied large amounts of terrigenous nitrogen to the study region, promoted NCP in the study region by potentially more than threefold. In addition, upwelling brought large uncertainties to the estimation of NCP in the core region of the cold eddy (cyclone) in June 2015. The deep euphotic depth in the SCS and the absence of correlation between NCP and the average photosynthetically available radiation (PAR) in the mixed layer in the autumn indicate that light availability may not be a significant limitation on NCP in the SCS. This study helps us to understand the carbon cycle in the highly dynamic shelf system.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3