On the relationship between ecosystem-scale hyperspectral reflectance and CO<sub>2</sub> exchange in European mountain grasslands

Author:

Balzarolo M.,Vescovo L.,Hammerle A.ORCID,Gianelle D.ORCID,Papale D.ORCID,Tomelleri E.,Wohlfahrt G.ORCID

Abstract

Abstract. In this paper we explore the skill of hyperspectral reflectance measurements and vegetation indices (VIs) derived from these in estimating carbon dioxide (CO2) fluxes of grasslands. Hyperspectral reflectance data, CO2 fluxes and biophysical parameters were measured at three grassland sites located in European mountain regions using standardized protocols. The relationships between CO2 fluxes, ecophysiological variables, traditional VIs and VIs derived using all two-band combinations of wavelengths available from the whole hyperspectral data space were analysed. We found that VIs derived from hyperspectral data generally explained a large fraction of the variability in the investigated dependent variables but differed in their ability to estimate midday and daily average CO2 fluxes and various derived ecophysiological parameters. Relationships between VIs and CO2 fluxes and ecophysiological parameters were site-specific, likely due to differences in soils, vegetation parameters and environmental conditions. Chlorophyll and water-content-related VIs explained the largest fraction of variability in most of the dependent variables. Band selection based on a combination of a genetic algorithm with random forests (GA–rF) confirmed that it is difficult to select a universal band region suitable across the investigated ecosystems. Our findings have major implications for upscaling terrestrial CO2 fluxes to larger regions and for remote- and proximal-sensing sampling and analysis strategies and call for more cross-site synthesis studies linking ground-based spectral reflectance with ecosystem-scale CO2 fluxes.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3