Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network
-
Published:2012-04-03
Issue:2
Volume:6
Page:431-446
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Rösel A.,Kaleschke L.,Birnbaum G.
Abstract
Abstract. Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like the Moderate Resolution Image Spectroradiometer (MODIS) using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron to reduce computational costs. Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC) for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with coefficient of determination ranging from R2=0.28 to R2=0.45. The mean annual cycle of the melt pond fraction per grid cell for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds on the geographical latitude, and has its maximum in mid-July at latitudes between 80° and 88° N. Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ARTIST Sea Ice-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave algorithms.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference51 articles.
1. Atkinson, P. M. and Tatnall, A. R. L.: Introduction - Neural networks in remote sensing, Int. J. Remote Sens., 18, 699–709, https://doi.org/10.1080/014311697218700, 1997. 2. Birnbaum, G., Dierking, W., Hartmann, J., Lüpkes, C., Ehrlich, A., Garbrecht, T., and Sellmann, M.: The Campaign MELTEX with Research Aircraft "POLAR 5" in the Arctic in 2008, Berichte zur Polar- und Meeresforschung/Reports on Polar and Marine Research, 593, 3–85, 2009. 3. Brandt, R. E., Warren, S. G., Worby, A. P., and Grenfell, T. C.: Surface Albedo of the Antarctic Sea Ice Zone, J. Climate, 18, 3606–3622, 2005. 4. Cavalieri, D. J., Burns, B. A., and Onstott, R. G.: Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data, J. Geophys. Res., 95, 5359–5369, 1990. 5. Comiso, J. C.: SSM/I Sea Ice Concentrations Using the Bootstrap Algorithm, NASA Reference Publication, 1380, 1–50, 1995.
Cited by
152 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|