Calibrating a long-term meteoric <sup>10</sup>Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced <sup>10</sup>Be depth profiles
-
Published:2020-12-16
Issue:2
Volume:2
Page:411-423
-
ISSN:2628-3719
-
Container-title:Geochronology
-
language:en
-
Short-container-title:Geochronology
Author:
Clow Travis, Willenbring Jane K.ORCID, Schaller Mirjam, Blum Joel D.ORCID, Christl Marcus, Kubik Peter W., von Blanckenburg FriedhelmORCID
Abstract
Abstract. Meteoric 10Be (10Bemet) concentrations in
soil profiles have great potential as a geochronometer and a tracer of Earth
surface processes, particularly in fine-grained soils lacking quartz that
would preclude the use of in situ produced 10Be (10Bein situ). One
prerequisite for using this technique for accurately calculating rates and
dates is constraining the delivery, or flux, of 10Bemet to a site.
However, few studies to date have quantified long-term (i.e., millennial)
delivery rates, and none have determined a delivery rate for an eroding
soil. In this study, we compared existing concentrations of 10Bein situ with new measurements of 10Bemet in eroding soils sampled
from the same depth profiles to calibrate a long-term 10Bemet
delivery rate. We did so on the Pinedale (∼ 21–25 kyr) and Bull
Lake (∼ 140 kyr) glacial moraines at Fremont Lake, Wyoming
(USA), where age, grain sizes, weathering indices, and soil properties are
known, as are erosion and denudation rates calculated from 10Bein situ. After ensuring sufficient beryllium retention in each profile,
solving for the delivery rate of 10Bemet, and normalizing for
paleomagnetic and solar intensity variations over the Holocene, we calculate
10Bemet fluxes of 1.46 (±0.20) × 106 atoms cm−2 yr−1 and 1.30 (±0.48) × 106 atoms cm−2 yr−1 to
the Pinedale and Bull Lake moraines, respectively, and compare these values
to two widely used 10Bemet delivery rate estimation methods that
substantially differ for this site. Accurately estimating the 10Bemet
flux using these methods requires a consideration of spatial scale and
temporally varying parameters (i.e., paleomagnetic field intensity, solar
modulation) to ensure the most realistic estimates of
10Bemet-derived erosion rates in future studies.
Funder
Division of Earth Sciences
Publisher
Copernicus GmbH
Reference67 articles.
1. Bacon, A. R., Richter, D. D., Bierman, P. R., and Rood, D. H.: Coupling
meteoric 10Be with pedogenic losses of 9Be to improve soil residence time
estimates on an ancient North American interfluve, Geology, 40, 847–850,
https://doi.org/10.1130/G33449.1, 2012 2. Barg, E., Lal, D., Pavich, M. J., Caffee, M. W., and Southon, J. R.:
Beryllium geochemistry in soils; evaluation of 10Be/9Be ratios in
authigenic minerals as a basis for age models, Chem. Geol., 140,
237–258, https://doi.org/10.1016/S0009-2541(97)00051-X, 1997. 3. Blum, J. D. and Erel, Y.: Rb/Sr isotope systematics of a granitic soil
chronosequence: The importance of biotite weathering, Geochim.
Cosmochim. Ac., 61, 3193–3204,
https://doi.org/10.1016/S0016-7037(97)00148-8, 1997. 4. Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., and Stone<span id="page421"/>, J.: Geological calibration of spallation production rates in
the CRONUS-Earth project, Quat. Geochronol., 31, 188–198,
https://doi.org/10.1016/j.quageo.2015.01.009, 2016. 5. Boschi, V. and Willenbring, J. K.: The role of pH, organic matter composition and
mineralogy on the sorption behavior of beryllium, Environ. Chem., 13, 711–722,
https://doi.org/10.1071/EN15107, 2016a.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|