Calibrating a long-term meteoric <sup>10</sup>Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced <sup>10</sup>Be depth profiles

Author:

Clow Travis,Willenbring Jane K.ORCID,Schaller Mirjam,Blum Joel D.ORCID,Christl Marcus,Kubik Peter W.,von Blanckenburg FriedhelmORCID

Abstract

Abstract. Meteoric 10Be (10Bemet) concentrations in soil profiles have great potential as a geochronometer and a tracer of Earth surface processes, particularly in fine-grained soils lacking quartz that would preclude the use of in situ produced 10Be (10Bein situ). One prerequisite for using this technique for accurately calculating rates and dates is constraining the delivery, or flux, of 10Bemet to a site. However, few studies to date have quantified long-term (i.e., millennial) delivery rates, and none have determined a delivery rate for an eroding soil. In this study, we compared existing concentrations of 10Bein situ with new measurements of 10Bemet in eroding soils sampled from the same depth profiles to calibrate a long-term 10Bemet delivery rate. We did so on the Pinedale (∼ 21–25 kyr) and Bull Lake (∼ 140 kyr) glacial moraines at Fremont Lake, Wyoming (USA), where age, grain sizes, weathering indices, and soil properties are known, as are erosion and denudation rates calculated from 10Bein situ. After ensuring sufficient beryllium retention in each profile, solving for the delivery rate of 10Bemet, and normalizing for paleomagnetic and solar intensity variations over the Holocene, we calculate 10Bemet fluxes of 1.46 (±0.20) × 106 atoms cm−2 yr−1 and 1.30 (±0.48) × 106 atoms cm−2 yr−1 to the Pinedale and Bull Lake moraines, respectively, and compare these values to two widely used 10Bemet delivery rate estimation methods that substantially differ for this site. Accurately estimating the 10Bemet flux using these methods requires a consideration of spatial scale and temporally varying parameters (i.e., paleomagnetic field intensity, solar modulation) to ensure the most realistic estimates of 10Bemet-derived erosion rates in future studies.

Funder

Division of Earth Sciences

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3