Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering
-
Published:2020-07-14
Issue:3
Volume:11
Page:579-601
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Tilmes Simone, MacMartin Douglas G.ORCID, Lenaerts Jan T. M.ORCID, van Kampenhout Leo, Muntjewerf LauraORCID, Xia Lili, Harrison Cheryl S., Krumhardt Kristen M.ORCID, Mills Michael J.ORCID, Kravitz BenORCID, Robock AlanORCID
Abstract
Abstract. A new set of stratospheric aerosol geoengineering (SAG) model experiments has been performed with Community Earth System Model version 2 (CESM2) with the Whole Atmosphere Community Climate Model (WACCM6) that are based on the Coupled Model Intercomparison Project phase 6 (CMIP6) overshoot scenario (SSP5-34-OS) as a baseline scenario to limit global warming to 1.5 or 2.0 ∘C above 1850–1900 conditions. The overshoot scenario allows us to applying a peak-shaving scenario that reduces the needed duration and amount of SAG application compared to a high forcing scenario. In addition, a feedback algorithm identifies the needed amount of sulfur dioxide injections in the stratosphere at four pre-defined latitudes, 30∘ N, 15∘ N, 15∘ S, and 30∘ S, to reach three surface temperature targets: global mean temperature, and interhemispheric and pole-to-Equator temperature gradients. These targets further help to reduce side effects, including overcooling in the tropics, warming of high latitudes, and large shifts in precipitation patterns. These experiments are therefore relevant for investigating the impacts on society and ecosystems. Comparisons to SAG simulations based on a high emission pathway baseline scenario (SSP5-85) are also performed to investigate the dependency of impacts using different injection amounts to offset surface warming by SAG. We find that changes from present-day conditions around 2020 in some variables depend strongly on the defined temperature target (1.5 ∘C vs. 2.0 ∘C). These include surface air temperature and related impacts, the Atlantic Meridional Overturning Circulation, which impacts ocean net primary productivity, and changes in ice sheet surface mass balance, which impacts sea level rise. Others, including global precipitation changes and the recovery of the Antarctic ozone hole, depend strongly on the amount of SAG application. Furthermore, land net primary productivity as well as ocean acidification depend mostly on the global atmospheric CO2 concentration and therefore the baseline scenario. Multi-model comparisons of experiments that include strong mitigation and carbon dioxide removal with some SAG application are proposed to assess the robustness of impacts on societies and ecosystems.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference74 articles.
1. Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R.,
Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Sci. Adv., 5, eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a 2. Bach, L. T., Hernández-Hernández, N., Taucher, J., Spisla, C., Sforna, C., Riebesell, U., and Arístegui, J.: Effects of elevated CO2 on a natural diatom community in the subtropical NE Atlantic, Front. Mar. Sci., 6, 1–16, https://doi.org/10.3389/fmars.2019.00075, 2019. a 3. Baran, A. J. and Foot, J. S.: New application of the operational sounder HIRS
in determining a climatology of sulphuric acid aerosol from the Pinatubo
eruption, J. Geophys. Res., 99, 25673, https://doi.org/10.1029/94JD02044, 1994. a 4. Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M.,
Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J.,
and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century:
projections with CMIP5 models, Biogeosciences, 10, 6225–6245,
https://doi.org/10.5194/bg-10-6225-2013, 2013. a, b, c 5. Cheng, W., MacMartin, D. G., Dagon, K., Kravitz, B., Tilmes, S., Richter, J. H., Mills, M. J., and Simpson, I. R.: Soil moisture and other hydrological changes in a stratospheric aerosol geoengineering large ensemble, J. Geophys. Res.-Atmos., 124, 12773–12793, https://doi.org/10.1029/2018JD030237, 2019. a
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|