Author:
Krishna Moorthy K.,Suresh Babu S.,Satheesh S. K.
Abstract
Abstract. In Part 1 of this two-part paper, we present the results of extensive and collocated measurements of the columnar and near-surface (in the well mixed region) properties of atmospheric aerosol particles at a tropical coastal location, Trivandrum (8.55° N; 76.97° E), located close to the southwest tip of Indian peninsula. These are used to evolve average, climatological pictures of the optical and microphysical properties and to delineate the distinct changes associated with the contrasting monsoon seasons as well as the transition from one season to the other. Our observations show a dramatic change in the columnar aerosol optical depth (AOD) spectra, being steep during winter monsoon season (WMS, months of December through March) and becoming quite flat during summer monsoon season (SMS, June through September). The derived Ångström exponent (α) decreases from a mean value of 1.1±0.03 in WMS to 0.32±0.02 in SMS, signifying a change in columnar aerosol size spectrum from an accumulation mode dominance in WMS to a coarse mode dominance in SMS. The composite aerosols near the surface follow suit with the share of the accumulation mode to the total mass concentration decreasing from ~70% to 34% from WMS to SMS. The overall mass burden also decreases in tandem. The changes in α are well correlated to those in the accumulation fraction of the mass concentration. Long-term measurements of the concentration of aerosol black carbon (BC), show prominent annual variations, with its mean value decreasing from as high as 6 μg m−3 in WMS to 2 μg m−3 in SMS. Correspondingly, its mass mixing ratio to the composite aerosols comes down from 11% to 4%. The changes in AOD and α are significantly positively correlated to those of BC concentration. The columnar properties are, in general well associated with the features near the surface. The implications of these changes to the optical properties and single scattering albedo and the resulting impact on direct radiative forcing are examined in the companion paper (Part 2).
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献