Diurnal, seasonal, latitudinal and solar cycle variation of electron temperature in the topside F-region of the Indian zone ionosphere

Author:

Chamua M.,Bhuyan P. K.,Subrahmanyam P.,Garg S. C.

Abstract

Abstract. Electron temperature Te observed by the SROSS C2 satellite at equatorial and low latitudes during the low to high solar activity period of 1995–2001 at the height of ~500 km is investigated in terms of local time, season, latitude, solar sunspot number Rz and F10.7 cm solar flux. The satellite covered the latitude belt of 31° S–34° N and the longitude range of 40°–100° E. The average nighttime (20:00–04:00 LT) Te varies between 750–1200 K and then rises sharply in the sunrise period (04:00–06:00 LT) to the morning high from 07:00 to 10:00 LT and attains a daytime (10:00–14:00 LT) average of 1100–2300 K. The morning enhancement is more pronounced in the equinoxes. A secondary maximum in Te is also observed around 16:00–18:00 LT in the June solstice and in the equinoxes. Daytime electron temperature was found to be higher in autumn compared to that in spring in all latitudes. Between the solstices, the amplitude of the morning enhancement is higher in winter compared to that in summer. Both day and nighttime Te observed by the SROSS C2 satellite bears a positive correlation with solar activity when averaged on a shorter time scale, i.e. over the period of a month. But on a longer time scale, i.e. averaged over a year, the daytime electron temperature gradually decreases from 1995 till it reaches the minimum value in 1997, after which Te again continues to rise till 2001. The variations are distinctly seen in summer and in the equinoxes. The sunspot activity during solar cycle 23 was minimum in 1996 and maximum in 2000. Annual average electron temperature, therefore, appears to follow the variation of solar activity with a time lag of about one year, both at the bottom and top of solar cycle 23, indicating an inherent inertia of the ionosphere thermosphere regime to variations in solar flux.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3