Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

Author:

Suresh Raju C.,Saha K.,Thampi B. V.,Parameswaran K.

Abstract

Abstract. Estimation of precipitable water (PW) in the atmosphere from ground-based Global Positioning System (GPS) essentially involves modeling the zenith hydrostatic delay (ZHD) in terms of surface Pressure (Ps) and subtracting it from the corresponding values of zenith tropospheric delay (ZTD) to estimate the zenith wet (non-hydrostatic) delay (ZWD). This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm) has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts) is developed using the radiosonde measurements from eight India Meteorological Department (IMD) stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a similar site-specific Tm-based model for the near equatorial station, Bangalore. A simple site-specific linear relation without accounting for the temperature effect through Tm is also found to be quite adequate for Bangalore. But for Hyderabad, a station located at slightly higher latitude, the deviation for the linear model is found to be larger than that of the Tm-based model. This indicates that even though a simple linear regression model is quite adequate for the near equatorial stations, where the temperature variations are relatively small, for estimating PW from GPS data at higher latitudes this model is inferior to the Tm-based model.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3